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1.  Introduction 
 
Weather generators (WGs) are statistical models generating synthetic sequences of local 

variables that replicate their statistical attributes (such as the mean and variance) but not 

observed sequences of events (Buishand et al., 2004; Huth et al., 2001; Busuioc and von Storch, 

2003; Kattz et al., 2003; Palutikof et al., 2002; Wilby et al., 2003). Generally, these models focus 

on the daily time scale, as required in many impact studies. The most used daily weather 

generators are based on the approach to modelling daily precipitation occurrence and usually 

these rely on stochastic processes via first-order autoregressive process. The Markov chain is 

widely used to describe the precipitation occurrence (wet/dry day or spells) and variation of 

precipitation amount on wet days is described by appropriate probability distributions such as 

exponential, gamma or mixed distribution. WGs are adapted for statistical downscaling by 

conditioning their parameters on large-scale atmospheric predictors. There are various ways to 

define the large-scale conditions such as: circulation indices (e.g. Katz et al., 2003), circulation 

clasification (e.g. Palutikof et al., 2002), regression models (Buishand et al., 2004; Busuioc and 

von Storch, 2003; Wilby et al., 2003). Katz et al. (2003) and Wilby et al. (2003) used a 

conditional weather generator for multi-site simulation of precipitation. 

 
 

The National Meteorological Administration (NMA) contribution in the ENSEMBLES project 



(RT2B) is related to the development of a conditional weather generator to generate daily 

precipitation time series in order to calculate various statistical parameters, including extreme 

precipitation indices. This model uses a first-order Markov chain combined with a statistical 

downscaling model (SDM).    More details about this model were presented by Busuioc and von 

Storch (2003) where it has been tested for one station (Bucharest) at which long daily 

observations were available (1901-1999). The sea level pressure (SLP) has been considered as 

large –scale predictor. Within the ENSEMBLES project this model has been developed for more 

stations over the Romanian territory using various predictors.  The methodology is shortly 

presented in Section 2. The skill of the downscaling model in estimation of precipitation 

distribution parameters and the skill of the conditional stochastic model in reproducing the most 

important statistical features of the generated precipitation time series are shown in Section 3.  

Conclusions are summarized in Section 4. 

 

2. Methodology 
The model presented in this report is a combination between a first-order Markov chain and a 

statistical downscaling model. Observational data refers to the interval 1950-1999 and they are 

seasonally stratified: Winter (December-February), Spring (March-May), Summer (June-

August), Autumn (September-November). Precipitation occurrence is described by a two-state, 

first-order Markov chain. The precipitation either occurs or it does not (the two states) and the 

conditional probability of precipitation occurrence depends only on the occurrence on the 

previous day. There are two parameters describing the precipitation occurrence process: the 

transition probability p01, the probability of a wet day following a dry day, and p11, the 

probability of a wet day following a wet day. As a wet day, the case of daily precipitation 

amount > 0.1 mm is used in this study. The variation of precipitation amount on wet days is 

described by the gamma distribution which has two parameters: the shape parameter (k) and the 

scale parameter (β) (Coe and Stern, 1982; Wilks, 1992). In terms of the two distribution 

parameters, the mean precipitation amount (considering only wet days) is µ=kβ. In this study, µ 

and k are considered the gamma distribution parameters. µ is estimated as the sample mean from 

the observed data set and k is derived as solution of the equation, 

              )ln()ln()() xxkk −=−ψln(   

 2



where ntxx
ti

i /)]([
,
∑=  , )(xψ is the first derivate of the log Gamma function and it is obtained 

using a computational subroutine by Amos (1983);  represents in our case the daily 

precipitation amount for wet days.  

)(tx

 

The p01, p11 transition probabilities are estimated from the observed data set. Therefore, the 

stochastic model to generate daily precipitation depends on four parameters (p01, p11, µ and k). 

The four parameters were computed over the two subintervals: 1950-1974 and 1975-1999, used 

as calibration and validation intervals. For this report the model was fitted over the 1975-1999 

period and validated over the 1950-1974. The work will continue by reversing the two intervals 

in order to test the model stability.  

 

The four parameters are linked to the large-scale circulation through a linear model based on 

canonical correlation analysis (CCA; von Storch et al., 1993; Busuioc et al., 1999, 2001). 

Specific humidity (SH) and potential instability (Q) indices and SLP taken from the NCEP-

NCAR reanalysis (Kalnay et al., 1996) were used as predictors (either used individually or 

together). The domain sizes for these predictors were selected so that the skill of the downscaling 

model (expressed as explained variance and correlation coefficient) linking the four precipitation 

distribution parameters and predictors is maximum. Therefore, the following predictor domains 

have been selected:  SLP (5o-50oE and 30o-55oN), SH and Q (20 o -30 o E and 40 o -50 o N). The 

SH index is defined as the average over the levels 1000 hPa, 950 hPa, 850 hPa and 700 hPa. The 

Q index is defined using the methodology presented by Cacciamani et al. (1995) and more 

details about this are also presented by Busuioc et al. (2007). 

 

The stochastic parameters (p01, p11, µ and k) are computed for every season from 90 to 92 daily 

precipitation amounts in every year. In this way, a time series of the parameters is obtained. Prior 

to the CCA the four parameters have been standardized, by subtracting the mean from the 

original value and by dividing with the standard deviation. The same procedure is applied for 

predictors when they are used in combination, otherwise only anomalies are considered. Two 

versions of the conditional stochastic model have been tested. The first one, presented by 

Busuioc and von Storch (2003), applies the CCA downscaling model for the four stochastic 
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parameters together for each station. The second one, presented in this report, applies the CCA 

for each parameter at more stations that gives more spatial coherence of the results. Therefore, 

the CCA determines pairs of patterns of two-time-dependent variables (the large-scale predictors 

and spatial vector of each stochastic parameter) so that their time components are optimally 

correlated. Both predictands and predictors are projected onto their EOFs (Empirical Orthogonal 

Functions) to eliminate noise (small-scale features) and to reduce the dimension of the data. 

Since the time coefficients are normalized to unity, the canonical correlation patterns represent 

the typical strength of the signals. A subset of CCA pairs is then used in a regression model to 

estimate the spatial vector of each stochastic parameter from the large-scale predictors. The 

precipitation distribution parameters (p01, p11, µ, k) estimated through the various CCA models 

are then used in the stochastic model in order to generate daily precipitation amounts. These time 

series are achieved for every season in every year. Since the four parameters should satisfy some 

conditions (0 ≤ p01, p11 ≤ 1 and µ, k > 0) the CCA model outputs are processed by applying the 

reversed operation of standardization before being used in the stochastic model. 

 

The conditional stochastic model performance is assessed in two steps: firstly, the performance 

of the CCA model (expressed as explained variance by reconstructed values from the total 

observed variance and correlation coefficient between observed and reconstructed values) in 

estimating the four parameters and secondly, the stochastic model performance in reproducing 

the observed precipitation statistical parameters: daily mean  precipitation amount, daily standard 

deviation, maximum of daily precipitation amount, maximum duration of wet/dry intervals and 

frequency  of precipitation exceeding some thresholds. All these parameters are calculated as the 

ensemble mean over 1000 model runs. 90 % confidence intervals for each precipitation statistical 

parameter are estimated and the capability of the conditional stochastic model to cover the 

corresponding observed parameters by these confidence intervals is analysed. It is known that the 

performance of the CCA model depends on the number of EOFs/CCAs used for model 

calibration (Busuioc et al., 1999, 2001). 

 

3.  Results 
3.1. CCA performance in estimation of the precipitation distribution parameters 
 
In earlier work, the CCA model performance in estimating the four parameters has been tested 
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for 24 stations distributed over the entire Romania region but with highest density in the southern 

part where the downscaling results will be applied for impact study in the CECILIA project.  It 

was found that the CCA model performance is very sensitive to the predictand's domain size and 

spatial density of the rainfall stations. Therefore, as part of more recent ENSEMBLES work, the 

model has been tested for 10 stations in southern Romania (see Figure 1), for winter, summer 

and autumn seasons. 

                  
 
             Figure 1. The location of stations used in this study. 
 
 
The model skill was calculated over the independent data set 1951-1974 with the model 

calibrated over the interval 1975-1999. The work will continue by reversing the two intervals in 

order to test the model stability. It was found that the highest performance was obtained for the 

winter p01 parameter, using SLP as predictor. Similar results were obtained using the 

combination between the SLP and SH predictors. Finally, this combination was preferred since 

the future climate change signal is better captured by moisture predictors. The instability index 

improved the model skill only for a few stations in case of the p01 parameter and for almost all 

stations for the other winter parameters and all parameters and all stations for summer. For 

autumn, SLP is the best predictor for a small south-western region, SLP+SH and Q for other sub-

regions, respectively, in the case of the p01 parameter. For the other three parameters, the CCA 

model is skilful only for some stations. 
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Tables 1 and 2 summarise the performance of the CCA model for winter and summer. As 

discussed in Section 2, the performance of the statistical downscaling model depends on the 

number of EOFs/CCAs. In a previous paper (Busuioc et al., 1999) the combination of EOFs and 

CCAs was selected so as to maximize the correlation coefficient between the spatial averages of 

observed and reconstructed anomalies. Obviously the SDM selected in this way for the entire 

country (corresponding to an optimum EOFs/CCAs combination) does not imply a high skill for 

all stations. Busuioc et al. (2006) proposed an alternative technique to optimize the SDM skill by 

selecting the SDM with the highest performance (from a SDM hierarchy obtained by using 

various combination of EOFs/CCAs) separately for each station rather than considering the 

overall performance for the entire country. This technique is also used in this study.  

 

As can be seen in Table 1, the same EOF/CCA combination of the SLP+SH predictor was found 

to be most skilful for the winter p01 parameter.  Similar results are obtained using SLP alone. 

This result shows that the p01 variability for southern Romania is controlled by the same large-

scale mechanism, namely atmospheric circulation variability. The fact that the inclusion of the 

moisture and instability predictors does not significantly improve the CCA model performance 

(except for Tirgoviste station) means that the dynamical factor (advection) is more important 

than the thermodynamical one in the winter season. As expected, this result is in agreement with 

those presented by Busuioc et al. (2006) by analysing the winter total precipitation amount. For 

the winter p11 and µ parameters it seems that the instability index is the best predictor, while for 

the k parameter, SH is the best predictor, but using various EOF/CCA combinations, especially 

for gamma parameters (µ and k). This result shows that gamma parameter variability for the 

winter season is mainly controlled by regional thermodynamical factors. Lower SDM skill for 

these parameters could be explained by additional local factors. The combination between SLP 

and Q gives a significant improvement of the model skill for some south-western stations (Tg. 

Jiu and Craiova). As an example, Figure 2 displays the estimated and observed standardized 

anomalies of the four parameters at Tg. Jiu station.  A very coherent evolution of the two curves 

for the transition probability parameters can be seen.  

 

For summer season (Table 2), as it was expected, the dynamical factor is less important, the 
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instability and moisture parameters controlling the variability for all precipitation distribution 

parameters. However, the performance of the CCA model is lower than for the winter season. 

The EOF/CCA combination is also less stable compared to the winter case. This result could be 

explained by the fact that the predictor spatial resolution is still too coarse in order to be able to 

pinpoint the summer convection processes affecting this region. 

Table 1. Skill of the CCA model  (expressed as percentage of explained variance/correlation 
coefficient*100) for estimation of the four parameters (p01, p11, µ , k) from various predictors over the  
subinterval 1951-1974 considered as independent data set with the model fitted over the subinterval 1974-
1999. The highest skill for each parameter with corresponding number of EOFs/CCAs and predictors 
used in the CCA model is presented.  The cases with two skilful predictors  are also presented. The non-
skilful cases are shaded in yellow. 
 
Station p

01
 p

11
 µ K 

 No EOFs, 
CCAs, 
predictor 

Skill No EOFs 
Predictor, 
CCAs, 
predictor 

Skill No EOFs, 
CCAs, 
predictor 

Skill No EOFs, 
CCAs, 
predictor 

Skill 

1. Drobeta 
Tr.Severin 

3+3,2 
SLP+SH 

60/82 4+6,3 
Q 
5+5,5 
SLP+SH 

14/51 
 
28/55 

3+3,3 
Q 

30/57 3+4, 2 
SH 

15/39 

2. Tg. Jiu 3+3,2 
SLP+SH 

60/82 4+6,3 
Q 
4+4,3 
SLP+Q 
 

25/58 
 
50/71 

3+3,3 
Q 

21/46 3+5,2 
SH 

26/51 

3. Craiova 3+3,2 
SLP+SH 

55/76 4+6,3 
Q 
4+4,3 
SLP+Q 
 

42/65 
 
47/70 

3+7,2 
Q 

31/57 3+8, 2 
SH 

14/39 

4. Pitesti 3+3,2 
SLP+SH 

44/67 4+6,3 
Q 

42/65 4+4,4 
Q 

2/20 2+6, 1 
SH 
 

2/14 

5. Tirgoviste 3+3,2 
SLP+SH 
3+5,2 
Q 

46/69 
 
64/82 

4+4,1 
Q 
 

22/52 3+6, 1 
Q 

7/26 2+6, 2 
SH 

5/22 

6. Ploiesti 3+3,2 
SLP+SH 
3+5,2 
Q 

45/68 
 
48/73 

4+4,3 
Q 

39/63 2+2,2 
Q 

6/46 2+6, 1 
SH 

-5/-1 

7. Calarasi 3+3,2 
SLP+SH 

18/43 4+4,3 
Q 

40/64 3+3,3 
Q 

25/50 3+7, 2 
SH 

8/31 

8. Buzau 3+3,2 
SLP+SH 

39/64 4+6,3 
Q 

38/62 3+3,3 
Q 

27/53   
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9. Constanta 3+3, 2 
SLP+SH 

29/61 4+6,2 
Q 
4+6,3 
Q 

41/65 
 
38/61 

3+6, 1 
Q 

-11/-8 3+7,3 
SH 

17/45 

10. Braila 3+3,2 
SLP+SH 

14/37 4+4,1 
Q 

14/39 3+6, 1 
Q 

-9/-5 2+6, 1 
SH 

-4/-7 

 
 
Table 2. Same as in Table 1 but for summer. 
 

Station p
01

 p
11

 µ k 

 No EOFs, 
CCAs, 
predictor 

Skill No EOFs, 
CCAs, 
predictor 

Skill No EOFs, 
CCAs, 
predictor 

Skill No EOFs, 
CCAs, 
predictor 

Skill 

1. Drobeta 
Tr.Severin 

7+7,7 
Q 

47/68 2+4,1 
Q 

5/40 2+7,2 
SH 

-4/10 3+3,3 
Q 

2/19 

2. Tg. Jiu 4+4,3 
Q 

22/48 2+4,1 
Q 
2+5,2 
SH 

1/9 
 
7/26 

2+7,2 
SH 

9/30 4+4,4 
Q 
2+7,2 
SH 

0/18 
 
9/30 

3. Craiova 3+3,2 
Q 

25/54 3+7,2 
Q 

30/55 2+7,2 
SH 

9/30 4+4,2 
Q 

18/43 

4. Pitesti 3+4,2 
Q 

0.0/25 4+7,2 
Q 

27/52 3+7,2 
SH 
3+7,2 
Q 

2/16 
 
20/44 

5+7,1 
Q 
3+6,2 
SH 

0/8 
 
6/32 

5. Tirgoviste 3+4,2 
Q 

22/47 3+8,1 
Q 

3/18 5+5,5 
Q 

20/48 3+5,3 
Q 

2/16 

6. Ploiesti 3+4,2 
Q 

19/43 4+7,2 
Q 

18/43 3+7,2 
SH 

1/15 5+7,1 
Q 

6/33 

7. Calarasi 3+4,2 
Q 

28/54 2+6,1 
Q 

7/29 5+5,2 
SH 

40/67 4+4,4 
Q 

18/44 

8. Buzau 5+5,5 
Q 

27/52 4+7,2 
Q 

6/28 3+3,3 
SH 
5+5,2 
Q 

4/19 
 
6/25 

- - 

9. Constanta 5+5,5 
Q 

17/45 2+6,1 
Q 

2/23 2+7,2 
SH 

9/33 4+4,4 
Q 

0/18 

10. Braila 5+5,5 
Q 

24/50 3+8,1 
Q 
$+6,2 
SH 

0/-18 
 
10/32 

5+5,5 
Q 

23/48 4+4,4 
Q 

0/13 
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Table 3.  Statistics of winter precipitation regime (maximum duration of dry and wet intervals 

, mean duration of dry and wet intervals , daily mean /standard deviation of 
precipitation within rainy days pp

maxmax , wetdry dd mean
wet

mean
dry dd ,

mean, ppsd, expected maximum of daily precipitation amount ppmax) at 10 
Romanian stations derived directly from observations (1951-1974) and indirectly through the stochastic 
conditional model with parameters calibrated over the period 1974-1999. The 90% confidence intervals 
are also presented in parentheses. 

 
Station  ppmean ppsd ppmax dmax

dry dmax
wet dmean

dry dmean
wet 

         
1. Braila      Obs. 4.5 6.8 51.9 27.0 8.0 4.3 2.0 
 Estim. 2.9 3.4 25.2 31.3 8.4 5.2 1.8 
  [2.7,  3.1] [3.1,  3.8] [18.0,  34.9] [23,  44] [6,  11] [4.8,  5.7] [1.7,  1.9] 
2. Buzau Obs. 3.5 5.4 37.4 25 8 4.1 2.1 
 Estim. 2.9 3.5 26.2 28.9 8.9 4.7 1.8 
  [2.7,  3.1] [3.1,  3.9] [19.1,  36.3] [21,  40] [6,12] [4.4,  5.1] [1.7,  1.9] 
3. Calarasi Obs. 3.3 4.9 44.4 27 10 3.5 2.3 
 Estim. 2.9 3.5 26.2 24.6 9.7 4.1 1.9 
  [2.7,  3.2] [3.1,  3.9] [19.4,  36.4] [18,  34] [7,  13] [3.8,  4.4] [1.8,  2.0] 
4. Craiova Obs. 3.8 5.1 38.1 25 9 3.6 2.4 
 Estim. 4.6 5.8 45.9 28.7 12.5 4.3 2.3 
  [4.3,  5.0] [5.2,  6.4] [33.3,  64.4] [20,  41] [9,  17] [4.0,  4.6] [2.2,  2.5] 
5. Constanta Obs. 3.6 5.0 46.7 27.0 11.0 3.5 2.1 
 Estim. 2.9 3.7 27.8 26.8 9.2 4.6 1.8 
  [2.6,  3.1] [3.2,  4.1] [20.3,  38.8] [20,  37] [7,  13] [4.2,  4.9] [1.7,  2.0] 
6. Dr.Tr.Severin Obs. 5.1 7.0 55.6 26.0 12.0 3.5 2.6 
 Estim. 4.6 5.7 44.7 28.5 16.4 4.5 2.5 
  [4.3,  5.0] [5.2,  6.3] [33.3,  60.8] [21,  41] [11,  24] [4.1,  4.8] [2.3,  2.7] 
7. Pitesti Obs. 4.1 5.5 38.5 25.0 11.0 3.8 2.4 
 Estim. 3.9 4.8 36.8 28.9 12.7 4.6 2.2 
  [3.6,   4.3] [4.3,  5.4] [27.1,  50.2] [21,  41] [9,  18] [4.2,  4.9] [2.1,  2.4] 
8, Ploiesti Obs. 4.1 5.9 36.8 25.0 12.0 4.0 2.4 
 Estim. 3.7 4.7 35.8 28.1 10.3 4.4 2.0 
  [3.4,  4.0] [4.2,  5.2] [26.8,  50.2] [20,  40] [8,  14] [4.1,  4.7] [1.9,  2.1] 
9. Tg. Jiu Obs. 5.5 7.5 71.4 25.0 12.0 3.6 2.5 
 Estim. 5.0 6.1 46.9 30.1 17.0 4.8 2.5 
  [4.6,  5.4] [5.5,  6.7] [34.9,  63.8] [22,  42] [12,  26] [4.4,  5.2] [2.3,  2.7] 
10. Targoviste Obs. 3.9 5.4 37.4 25.0 11.0 3.9 2.4 
 Estim. 3.7 4.3 32.0 29.2 10.9 4.7 2.1 
  [3.4,  4.0] [3.9,  4.7] [23.9,  43.8] [21,  41] [8,  15] [4.4,  5.1] [2.0,  2.2] 
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Table 4.  Same as in Table 3 but for summer. 
 

Station  ppmean ppSD ppmax dmax
dry dmax

wet dmean
dry dmean

wet 
         
1. Braila      Obs. 7.0 11.0 108.0 31.0 10.0 5.1 1.7 
 Estim. 6.2 7.6 57.0 27.2 7.5 4.5 1.7 
 Confid. [5.7,   6.8] [6.7,    8.5] [41.4,  79.6] [20,  38] [6,  10] [4.2,  .9] [1.6,  .8] 
2. Buzau Obs. 7.2 10.5 66.6 28.0 8.0 3.9 1.8 
 Estim. 6.7 8.2 62.8 23.3 8.6 3.9 1.8 
 Confid. [6.1,  7.2] [7.3,  9.1] [46.1,  86.7] [17,  33] [7,  11] [3.6,  4.1] [1.7,  1.9] 
3. Calarasi Obs. 6.9 10.1 55.3 29.0 7.0 4.4 1.8 
 Estim. 5.6 6.9 53.6 25.9 7.5 4.3 1.6 
  [5.2,  6.1] [6.2,  7.8] [37.6,  76.3] [19,  36] [6,  10] [4.0,  4.6] [1.6,  1.7] 
4. Craiova Obs. 5.8 8.9 84.8 19.0 10.0 3.8 1.8 
 Estim. 6.1 8.0 63.5 23.2 9.9 3.9 1.8 
 . [5.6,  6.6] [7.2,  8.9] [46.1,  87.9] [17,  32] [7,  14] [3.6,  4.2] [1.8,  2.0] 
5. Constanta Obs. 5.1 8.7 69.9 28.0 6.0 5.5 1.5 
 Estim. 5.0 6.0 43.8 30.0 6.8 5.0 1.6 
  [4.6,  5.4] [5.3,  6.7] [31.4,  60.8] [22,  41] [5,  9] [4.6,  5.4] [1.5,  1.7] 
6. Dr. Tr. Severin Obs. 6.9 12.2 171.7 31.0 6.0 4.2 1.7 
 Estim. 5.6 7.1 55.4 26.0 7.8 4.3 1.7 
 . [5.1,  6.0] [6.4,  8.0] [39.4,  78.4] [19,  36] [6,  10] [4.0,  4.6] [1.6,  1.8] 
7. Pitesti Obs. 7.2 10.5 84.7 20.0 11.0 3.6 2.0 
 Estim. 6.9 8.8 69.5 19.2 10.1 3.3 1.9 
  [6.4,  7.4] [8.0,  9.7] [51.6,  96.7] [14,  26] [7,  15] [3.1,  .5] [1.8,  2.0] 
8, Ploiesti Obs. 6.7 9.7 62.2 28.0 10.0 3.2 1.9 
 Estim. 6.5 8.4 67.0 18.1 10.3 3.1 2.0 
 . [6.1,  7.0] [7.6,  9.2] [50.1,  91.7] [13,  25] [8,  14] [3.0,  3.3] [1.9,  2.1] 
9. Tg. Jiu Obs. 7.7 11.2 79.3 17.0 8.0 3.4 1.9 
 Estim. 7.0 9.2 73.9 21.6 9.4 3.6 1.9 
  [6.5,  7.5] [8.3,  10.1] [54.6, 100.9] [16,  30] [7,  13] [3.3,  3.8] [1.8,  2.0] 
10. Targoviste Obs. 8.1 11.1 85.0 20.0 8.0 3.5 1.8 
 Estim. 7.4 9.3 74.0 17.8 9.4 3.1 1.9 
  [6.8,  7.9] [8.4,  10.2] [54.6, 102.2] [13,  24] [7,  13] [2.9,  3.3] [1.8,  2.0] 
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Figure 2. Winter standardized anomalies of the precipitation distribution parameters for the 
period 1952-1974, derived from observations (red line) and derived indirectly through the CCA 
model (blue line) fitted to the 1975-1999 data.  
 
 
 
3.2. Accuracy of the conditional stochastic model 
 

Using the most skilful CCA models for each of the four parameters, the daily time series 

were generated and precipitation statistics were calculated. Firstly, these parameters are 

used in the Markov chain model to generate daily time series of precipitation. The daily 

precipitation amount is randomly generated using a gamma distribution. The performance 

of the conditional stochastic model is assessed in terms of how well it reproduces the 

statistical features of the precipitation time series presented in Section 2. These features 

are represented by: maximum duration of dry and wet intervals (d ), mean maxmax , wetdry d
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duration of dry and wet intervals (d ), daily mean /standard deviation of 

precipitation within rainy days (pp

mean
wet

mean
dry d,

mean, ppsd), expected maximum of daily precipitation 

amount (ppmax) and frequency distributions of daily precipitation within/exceeding 

various intervals. After running the conditional model 1000 times, a distribution of these 

parameters is achieved. Then, the ensemble mean and their 90% confidence intervals of 

the respective parameters were computed and these values are considered as expectations 

for these parameters.  

 

Table 3 and 4 summarize the results over the independent interval 1951-1974, with the 

four parameters estimated through the CCA model fitted over the interval 1974-1999, for 

the winter and summer seasons, respectively. From comparison with the similar 

parameters calculated from observations it was found that, generally, the model is skilful 

for cases where the CCA model is skilful in simulating the four precipitation distribution 

parameters. The maximum duration of wet/dry intervals are generally well reproduced by 

the conditional stochastic model for both seasons (the observed values are covered by the 

90% confidence intervals), while the expected maximum of daily precipitation amount 

(ppmax) is a little underestimated for some stations. The frequency of heavy precipitation 

(exceeding 10mm, 15mm and 20mm) is well reproduced for summer but it is 

underestimated for the winter (see Figure 3). The small precipitation amounts (≤ 5 mm) 

are overestimated for both seasons while the amounts between 5mm and 15mm are well 

reproduced for winter and overestimated for summer. Other parameters are generally 

underestimated for both seasons: mean duration of dry and wet intervals, daily mean 

/standard deviation of precipitation within rainy days. Figure 4 shows the temporal 

evolution of the winter precipitation amount at the Tg. Jiu station derived from daily time 

series generated using various predictors and compared to those derived directly from 

observations. It can be seen that, when one parameter is estimated through a more skilful 

CCA model, the results are better: p11 is better estimated using the SLP+Q predictor 

(50% explained variance, 0.70 correlation coefficient), compared with the Q predictor 

(25% explained variance, 0.58 correlation coefficient) that is the best predictor for almost 

all stations regarding this parameter. The temporal evolution as well as magnitude of the 

observed values is well reproduced which is a good surprise for a stochastic model.  
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Figure 3.  Seasonal  mean of the  precipitation frequency exceeding 10/15 mm/day over the 
period 1951-1974 derived from observations and from generated time series through the 
conditional stochastic model (as ensemble averages over 1000 runs) with parameters calibrated 
over the period 1975-1999. 90% confidence intervals are shaded in grey. 
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Figure 4. Winter (December-February) precipitation amount at the Tg. Jiu station over the 
interval 1951-1974 derived from observations (blue line) and indirectly from daily time series 
generated through the conditional stochastic model fitted over the interval 1974-1999 with 
parameters estimated by the most skilful CCA model for each parameter: a) SLP+SH (p01), Q 
(p11, µ), SH(K)-red line; b) same as in a) but using SLP+Q predictor for p11 (the highest skill)-
black line; c) same as in b) but with SLP predictor for p11 (similar skill with SLP+SH)-red 
dashed line, which overlaps the black line. 
 
 
 
4. Conclusions 
The accuracy of the conditional stochastic model is generally dependent on the accuracy 
of the CCA model in estimating the four precipitation distribution parameters. The results 
presented here show that the performance of the CCA model was significantly improved 
in the case of the summer season, especially for transition probabilities, when the 
instability and moisture indices were considered as predictors compared with previous 
studies when only sea level pressure was considered as predictor. For winter, the case of 
the transition probability from a dry day to a wet day, the SLP predictor gives similar 
results with those obtained by using instability/moisture indices alone or by combination 
with SLP. For the other parameters, the instability/moisture predictors give better results.  
However, the performance of the CCA model for summer is lower than for winter.  
 
The conditional stochastic model is accurate in reproducing the maximum duration of 
wet/dry intervals for both seasons, while the expected maximum of daily precipitation 
amount (ppmax) is a little underestimated for some stations. The frequency of heavy 
precipitation (exceeding 10mm, 15mm and 20mm) is well reproduced for summer but it 
is underestimated for winter. The small precipitation amounts (≤ 5 mm) are 
overestimated for both seasons while the amounts between 5mm and 15mm are well 
reproduced for winter and overestimated for summer. 
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