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[1]1 The effects of serially correlated residuals on the accuracy of linear regression are
considered, and remedies are suggested. The Cochrane-Orcutt method specifically
remedies the effects of serially correlated residuals and yields more accurate regression
coefficients than does ordinary least squares. We illustrate the effects of serially
correlated residuals, explain the application of the CO method, and evaluate the gains to
be achieved in its use. We apply the method to an example from climate reconstruction,
and we show that the effects of serial correlation in residuals are present and show

the significantly improved result.
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1. Introduction

[2] Studies of past climate can be based on reconstruc-
tions that rely on the capture of climate information in
various properties of biological remnants and “geological
formations that remain accessible long after the record was
made. Jones and Mann [2004] provide an overview of the
field. The captured climate information can sometimes be

‘ recovered, but the quality of the extracted information
depends -on the record itself, the proxy, and the type of
methods used to extract the information. This paper will
look at one’specific issue of this problem, related to the use
of regression methods in the extraction process.

[3] Typically an instrumental climate record exists for a
location-or region alongside proxy records, and the analysis
method consists of finding the relationship between the two
by regressmn y: = o + Bx; + u, where u, is an error term.
The parameters o and 3 are not known but must be
estimated from the predictor and predictand series, This
estimation procedure is often considered as being synony-
mous with the technique of “ordinary least squares” (OLS),
where the parameters in the regression model are estimated
by minimizing the sum of the squared “residuals” (ob-
served error terms). '

{4] However, this is not the best approach under all
circumstances. There are conditions to be met, in order
for the OLS estimate to be the “best™ estimate of the model
parameters. This is well known and described in statistical
text books [e.g., vorn Storch and Zwiers, 1999], but in
applications these conditions are not always met, or explic-
itly considered.

[s] Central to this is the Gauss-Markov theorem, which

. states that if the error term time series is stationary and has
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no serial correlation, then the OLS parameter estimate is the
Best Linear Unbiased Estimate (BLUE), meaning that all
other linear unbiased estimates will have a larger variance.
An estimator having the smallest possible variance is
referred to as an “efficient estimator.” The Gauss-Markov
theorem thus points to the error term and not the time series
themselves as being important to consider. Next, it states,
that under these conditions, the OLS estimate has two nice
properties, namely it is unbiased and has the smallest
possible. variance among the linear estimates.

[6] The premise in the Gauss-Markov theorem essentially
states that the error term must have no structure; for instance,
the level of the residuals must not have a trend and the
variance must be constant through time. There is no a priori
reason to trust that residuals should. be without structure;
there are at least two ways in which structure in the residuals
can occur. First, there is the effect of missing predictors. Any
factor that a model fails to incorporate, either by being
unrecognized or by being unknown, will turn up in the
residuals. Therefore the nature of the residuals depends on
the factors omitted. Some of these factors may be serially
correlated and thus give rise to serially correlated residuals.
Second, there is the effect of mixing variables with different
levels of senal correlation. Because the residuals are a linear
combinatiori of the predictors and predictand it is possible
that the residuals will be serially correlated if one of the
dependent or independent variables also is.

[7]1 When the error term in the regression does not fulfil
the premise in the Gauss-Markov theorem, OLS is still
unbiased; however, it is not BLUE, i.e., OLS does not
exploit the data at hand to give the most efficient estimate
of the parameters in the model. In this situation, a strategy
would be to transform the problem (i.e., the variables and
their regression relationship) so that the error term in the
transformed problem has no structure. This strategy will be
adopted in the following section ending up in the procedure
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known as the Cochrane-Orcutt algorithm [Cochrane and
Orcutt, 1949]. Subsequently, we will illustrate this algorithm
within the fi¢ld of climate reconstruction by proxies. In this
field multiple regression techniques are widely applied in the
“standard OLS form,” but the conditions for the Gauss-
Markov theorem are usually not tested for. For example, in
the past five volumes of Journal of Climate, six papers on
climate reconstructions were published but the serial corre-
lation of residuals was considered in only two of them.

[8] An alternative way to overcome the problems with
estimation of a regression model when the error term has
serial correlation was offered by Guiot [1985] who separated
predictor and predictand series into three spectral band
components and estimated regression models in each band,
where the residuals were tacitly assumed to be approxi-
mately white. The method is applied to the reconstruction of
summer temperature in Marseilles from tree rings. Recently,
a variant of the method, the “hybrid frequency-domain
modification” of the RegEM approach, has been investi-
gated more systematically by Rutherford et al. [2005] to
reconstruct global temperature fields from proxies. These
authors find that this approach does not perform systemat-
ically better than the conventional time domain RegEM. A
reason for this could be that low-frequency part of the
estimation suffers from a small number of statistical degrees
of freedom leading to a poor estimation of this part of the
model. The strength of the Cochrane-Orcutt procedure in
this context is that it introduces one extra parameter only,
thus minimizing the risk of overfitting.

[9] Maximum - Likelihood estimation is another alterna-
tive, offering asymptotic consistent and efficient estimates

for any structure of error terms and for a wide range of
models, including nonlinear regression models. Among the

drawbacks of this method are computational costs due to the
necessary iterative procedure and the occasional lack of
robustness in compatison with simpler estimators. For a
discussion of this estimation method, see Harvey [1990].
[10} Serially correlated error terms in climate reconstruc-
tion. by proxies can have several different causes, two of
which were outlined above. It could also be caused by the
omission of a lagged copy of an included predictor. In this

. case the lag lengths to be included can be determined by

considering the cross-correlation function (Fritts et al.
[1971]; for the statistical basis, see, e.g., Box and Jenkins

[1976]). This procedure will usually introduce several

additional -parameters into the model, enhancing the risk
of overfitting. Another cause of serially correlated errors is
““absent proxies,” i.e., a proxy we do not have but which
would have explained a large fraction of variance in the
reconstruction model. In this case we cannot construct a

 model with unstructured error term. We must identify and

estimate a model using the proxies at hand and with a

- serially correlated error term. That is exactly what the

Cochrane-Orcutt procedure offers.

2. Cochrane-Orcutt (CO) Algorithm

[11] Consider a multiple regression model

K
y1=0L+Zka§].€)+Ht, n
k=1

where the error term u, follows an AR(1) process with the
autocorrelation at lag 1 being p (whose value is unknown at
this stage):

U = pug— + €, (2)

where € is a series of serially independent numbers with
mean zero and constant variance. If p is not zero then the
Gauss-Markov theorem cannot be applied and therefore
OLS is generally not an efficient estimator of miodel
parameters, and other methods are called for. One such
method is that suggested by Cochrane and Orcutt [1949],
which modifies equation (1) by rewriting it for # — 1 instead
of ¢, multiplying all terms by p, subtracting the result from
equation (1), using equation (2), and rearranging terms to
obtain .

K
=) =l -p) + Zﬁk (x§k) - ngﬂ) +e  (3)
=1

fort=2,.N.

[12] Equation (3) is a regression equation with modified
variables, coefficients, and an error term that satisfies the
Gauss-Markov theorem. We have, however, introduced one
new parameter, namely p, which prevents us from applying
OLS directly.

[13] We can solve the problem iteratively by first esti-
mating (using OLS) o and the (3s from equation (3) for an
initial guess of p. Then, using the values of o, 3 just
determined a new value for p is found (using equations (1)
and (2)), which is then held fixed and used to find new
values for the o, 8s, and so on, until convergence occurs (see
Ramanathan [2002, p. 393] for a detailed description of the
algorithm). Discussions have appeared as to whether this
technique guarantees convergence to a good solution [e.g.,
Dufour et al., 1980]; the outcome of the discussion seems to
be that a grid search through parameter space almost always
reveals that the iterated solution is the best one.

[14] The Cochrane-Orcutt method is well known in the
econometrics literature, but has, it seems, not been widely
appreciated outside this field. In the following sections we
will show that there is reason to take notice of the method in
geophysics, as it offers advantages in realistic situations
where OLS is commonly applied without being wholly
appropriate.

R illustrating the Cochrane-Orcutt Algorithm
by Applying It to Artificial Series With Known
Properties: Variables Without Serial Correlation

, [15] We next show the results of applying the CO
algorithm to artificial problems. We generate suitable
regression problems from the following model:

Y=o+ legl) + Bzx§2) + U, 4)
where x{!? are two uncorrelated predictor vectors generated
from normally distributed random numbers; furthermore,

Up = P + €, (5)

is the noise, where € is normally distributed white noise.
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[16] After generating independent random vectors x>
we generate y, (in equation (4)) by picking values of o, 31,
and (,, and the auto-correlated series u, is generated by
picking a value for p and generating the series iteratively.
We estimate o, 81, 8, using OLS and the CO method. In
Figure 1 we show the results of 1000 simulations of this
procedure for p = 0.7, which is a realistic value as we shall
see below. ‘

[17] We note that the disturbance u causes a spread in the
estimates of the coefficients, but that these are centered on
the correct solutions; hence, there is no evidence of a bias
on average, in accordance with theory.

[18] In summary, we have tested the performance of QLS
versus the CO method in trials with independent and
“white” predictors with auto-correlated additive noise. We
have shown that if residuals have structure, in the sense of
having a serial correlation different from 0, then the CO
method will outperform OLS in determining regression
coefficients more the larger p is.

4. " Application of the CO Methed to a Climate
Reconstruction Based on Proxies

[19] Instrumental climate series are rarely as long as are
the “proxy” series that can be developed from natural
records, such as tree ring data, ice cores, lake varves, coral
rings, and so on. These natural observables may reflect
environmental conditions to some extent, and by calibrating
these " against instrumental series we can obtain climate
information back in time, before instrumental records be-
"gan. The calibration of the proxy can in its simplest form be

-performed by a regression, and the present discussion about
how well regression methods perform is relevant.

. [20] One early attempt to calibrate temperature proxies
against instrumental data was that of Landsberg and
Groveman [Groveman and Landsberg, 1979; Groveman,
1979%;'wha utilised a technique whereby supposed proxies
for global mean temperatures were related to an instru-
mental temperature curve, using multiple linear regression.
Although the data available to Landsberg and Groveman
were limited compared to the much larger data collections
now used in climate reconstructions, and the method, in

“the form chosen by those authors, is not now commonly
used, we chose the example in order to show the need for
CO instead of OLS for the calibration. The illustrative
powers of the example are undiminished by the choice of
data and the details of the method of that work.

[21] Very briefly, the Landsberg and Groveman method
consists of scaling or calibrating climate proxies against a
constructed Northern Hemisphere mean instrumental record
[Borzenkova et al., 1976] through multiple regression. The
proxies include long instrumental temperature series, tree
rings, and winter temperatures estimated from dates of lake
freezings [Groveman, 1979]. Not all proxies have the same
length; so in the application of Landsberg and Groveman
proxies were chosen that all ended near the end of the
instrumental record but which started at different times,
from 1579 AD and. forward in time. Sets of proxy time
series were chosen on the basis of the years in which they
overlapped. In this way a final reconstruction was patched
together from many segments, each of which are the results

- of a calibration during the instrumental period (18811954,
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Figure 1. Results of simulations of OLS and CO

regression on 1000 simulated data sets. From lower left to
upper right, the clouds of crosses are the results for the
constant term « and the regression coefficients 3, and 3,;
these were assigned the values 0.3, 0.6, and 0.9 in the
model, respectively (the dotted lines). Independent white
noise time series of length 100 points were used. The noise
added to the model is auto-correlated, with p = 0.7. There is
clearly a larger spread in the OLS regression coefficients.
Bias in the estimates seem low: the values are centered on
the model values (dotted lines).

or 1881—-1975 depending on the proxy data and reconstruc-
tion period), but being used only for a specific time interval
before this era. Twenty-eight such intervals occur.

[22] We first reconstructed the method of Landsberg and
Groveman from the data published [Groveman, 1979]. The
residuals had auto-correlations at lag 1 from 0.1 to 0.42,
depending on the choice of proxy data. The residuals’ auto-
correlation were next tested for significance using the
Bartlett cumulated periodogram test ‘[Bartlett, 1966]; the
residuals are significantly auto-correlated for some choices
of proxy data. This conclusion was also obtained using
another test for serial correlation in time series: the Durbin
Watson test [Draper and Smith, 1981]. The Durbin Watson
test is a test of a statistic o, which in our case is calculated
from the residuals e, .., e,:

~

~ d= > (ent - eH)z ) (6)
N ‘ D€

[23] The telationship between p and d is d =~ 2(1 — p), so
the range for d is between 0 and 4, and d is approximately 2
when p = 0. The value of d obtained from the residuals is
compared to critical values (e.g., the tables of Draper and
Smith [1981]). If d is less than a lower limit then the null
hypothesis of no serial correlation in the residuals can be
rejected, whereas if d is above an upper limit the hypothesis
cannot be rejected. Additionally, values in between are
indeterminate.

[24] The DW test gave similar results to the Bartlett test,
namely, that the residuals, in the instrumental calibration
range, are serially correlated for those cases when a few
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Figure 2. (top) Landsberg-Groveman NH temperature

reconstruction reconstructed, using OLS (thin line) and
CO (red line). (bottom) Difference between the CO and the
OLS reconstructions, and error limits on the difference,
generated from an error propagation calculation and the
unexplained variances on both curves (see text).

proxy time series from tree ring data are used, notably the
first period from 1579—1658 AD (at the 99% significance
level). Values of the d statistic close to the lower limit, but
inside the “indeterminate range” were obtained for other
carly intervals, notably 1706—1764 and 1817 1820. There
is therefore support for recalculating the temperature recon-
struction with CO substituted for OLS, with the expectation
that significantly different results could be obtained for the
carly years of the reconstruction.

[25] We therefore replaced the OLS regressions by the
CO algorithm and derived a new reconstructed temperature
curve. The original and the new curve are shown in Figure 2
(top). The difference between the two and its uncertainty are
shown in Figure 2 (bottom). The uncertainty on the differ-
ence 1s calculated from the errors on each curve, ATy g and
AT, as IIAT('?’H_S 4 ATZ,. The uncertaintics on Tops.co
are estimated from the variance of the residuals in the
calibration interval.

[26] We see that there are considerable differences be-
tween the reconstructions in the early years (e.g., 0.4°C near
1600 AD), and a tendency for a slope in the difference
toward nearly zero difference for the 19th century.

THEJLL AND SCHMITH: LIMITATIONS ON REGRESSION ANALYSIS

D18103

[27] In order to show that this qualitative impression of a
significant change corresponds to a quantifiable improve-
ment mn reconstruction results, we perform several statistical
tests next.

[28] First, we calculate the proportion of unexplained
variance during the calibration period, using “out of sample
data.” The “out of sample data™ are constructed in a sliding
window that moves through the calibration period. The
window is long enough to ensure statistical independence
between the middle point and the interval endpoints, and the
middle point is chosen as a member of the “out of sample
data,” progressively. The subinterval length was chosen as
twice the longest decorrelation time of any data (proxy or
calibration temperature) in the calibration period. The
largest serial data correlation was 0.527 which corresponds
to a decorrelation time of about 3 years. An interval of
7 years was therefore taken out of the data, progressively,
the 3 years on either side of the central point discarded and
the central point used to build the set of independent data.
This test on independent data shows that the level of
uncertainty on the temperature difference (Toy s — Tep) is
near 0.157C. Thus parts of the 17th century have a signif-
icant difference in reconstructed temperatures, with our
reconstruction being warmer for most years in the proxy
period.

[29] Second, we apply a standard statistical test to the
means of the two temperature reconstructions in sliding
subintervals 31 vears long, starting in 1579 and moving
forward. We find that Student’s i-test indicates a significant
difference in series means up to the late 1600s. The p values
for the period after 1700 are all above 0.1, indicating that it
is not possible to reject, at the 90% significance level, the
hypothesis that the means are the same after 1700. These
two tests thus give us some time-resolved information on
when the CO and OLS method give significantly different
results, in this particular example.

[30] We finally apply a third test which will give infor-
mation about the difference between the two methods in the
whole interval from 1579 to 1880. This method is based on
regressing Tops — Too against time and testing whether the
regression coefficient is significant. Significance is estab-
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Figure 3. Comparing CO and OLS on independent data.
The solid line histogram gives the distribution of R
(Pearson’s correlation coefficient) for the 28 possible
regressions using the CO method, while dotted lines
indicate OLS results. Median values are plotted as vertical
lines. Req is about 17% larger than Rpops. See text for
explanation of the validation process.
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Table 1. Results of Students z-Test Applied to Distributions of
Correlations for OLS and CO*

Quantity t p
R 4.76932 0.0000144

*The statistics are calculated for the assumption that variances of the two
distributions compared are equal. Allowing unequal varances does not
change the result. We tested the hypothesis that the distributions of R from
CO and OLS had the same mean value. Variable ¢ is the T statistic of this
test and p is the probability that the hypothesis is true.

lished at the 99.55% level by comparing the absolute value
of the slope to the absolute value of the slope of pseudo-
randomly generated time series of identical length. The
surrogate dafa series are generated by the method of phase
scrambling [Theiler and Prichard, 1996], which implies
that we are generating time series with power spectra
identical to the original series. Series generated in that
way will all have different appearances when plotted against
time but are all picked from a population of series statisti-
cally similar to the original series. Of 10,000 trials on
surrogate data the observed slope (absolute value) was only
exceeded 45 times by chance, implying a significance level
of 99.55%, i.e., we can certainly reject the hypothesis that
the two series, taken over their whole length, are identical.

[31] These three tests show us a generally significant
difference: between T reconstructed with the OLS and the
CO methods; and a particularly large difference in the
1600s.

5 Validation on Independent Data

f32]: We have thus shown that a significant difference
exists in the results from OLS and CO; let us now consider
whether it is possible to show that the results are better with
CO than OLS. We do this by a validation method based on
the gorrelation between instrumental data and independent
predictions of the instrumental era data, using a sliding
-window technique. This is applied to both the OLS and the
CO methods, and subsequently corpared.

[33] We perform the validation by withholding data in
successive windows sliding through the instrumental era.
Using windows that are twice as wide as the estimated
decorrelation time of the data (see above), we regress the
proxies against the windowed instrumental data, use the
-derived- regression constant and coefficients to estimate
the “value of the instrumental data at window midpoint,
and thus, by sliding the window and repeating the above
procedure, generate independent estimates of the instrumen-
tal data, finally calculating the correlation between the
predicted instrumental data and the instrumental data. As
there are 28 possible choices of regressions to perform we
receive 28 values of R (Pearson’s correlation coefficient)
from the CO and OLS methods, and proceed to test these
distributions for significant differences.

[34] The distributions of Rco and Rorg were compared
(see Figure 3). Median Rco is about 17% larger than Ropg.
We tested whether the distributions of R are significantly
different between CO and OLS, using a standard Student’s
t test. Table 1 shows that the hypothesis that they have the
same mean values can be rejected. Thus validation on
independent data shows that a significant improvement in
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correlation is possible when using the CO method instead
of the OLS method.

6. Summary

[35] We have by example shown how important the
effects of serially correlated residuals can be for the results
of regressions, and offered a remedy for situations when
regression must be performed in the presence of such auto-
correlated residuals, namely the Cochrane-Orcutt method.

[36] In a climatological application we have shown the
extent of the effects of using CO instead of OLS in a proxy
reconstruction. We have validated the CO and OLS methods
on independent data during the instrumental era and shown
that the CO reconstruction was significantly better correlated
with the target than the OLS reconstruction, and shown that
during the proxy-only era significant differences between
reconstructed temperatures using CO and OLS exist.

[37]1 Although the chosen proxy-based temperature recon-
struction method may no longer be current, the use of
proxy-based reconstruction methods to build a description
of past climate is growing. Methods used in recent climate
reconstructions include principal component regression and
canonical analysis™ [Luterbacher et al., 2002; Jones and
‘Mann, 2004]. While the first is a multiple regression, the
second “is at the top of a hierarchy of regression modelling
approaches™ [Barnett and Preisendorfer, 1987, p. 1827].
Therefore both methods potentially suffer from the short-
comings of OLS. A generalized Cochrane-Orcutt algorithm
could profitably be applied to these methods, but is beyond
the scope of this paper.
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