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Abstract. We use recent advances in time series econometrics to estimate the relation among emis-
sions of CO2 and CH4, the concentration of these gases, and global surface temperature. These models
are estimated and specified to answer two questions; (1) does human activity affect global surface
temperature and; (2) does global surface temperature affect the atmospheric concentration of carbon
dioxide and/or methane. Regression results provide direct evidence for a statistically meaningful rela-
tion between radiative forcing and global surface temperature. A simple model based on these results
indicates that greenhouse gases and anthropogenic sulfur emissions are largely responsible for the
change in temperature over the last 130 years. The regression results also indicate that increases in
surface temperature since 1870 have changed the flow of carbon dioxide to and from the atmosphere
in a way that increases its atmospheric concentration. Finally, the regression results for methane hint
that higher temperatures may increase its atmospheric concentration, but this effect is not estimated
precisely.

1. Introduction

Evidence for the effect of human activity on climate comes from two sources:
experiments run by climate models and statistical analyses of historical data. The
ability of climate models to simulate the spatial/temporal temperature record is
improved by including the radiative forcing of greenhouse gases and tropospheric
sulfates (Mitchell and Karoly, 2001; Wigley et al., 1998; Santer et al., 1996; Mitchell
et al., 1995). Consistent with these results, statistical analyses indicate that there is
a link between surface temperature and the radiative forcing of greenhouse gases
and anthropogenic sulfur emissions (Kaufmann and Stern, 1997, 2002; Stern and
Kaufmann, 2000; Tol and de Vos, 1998).

The interpretation of statistical results is complicated by stochastic trends in the
historical time series, which can generate spurious regression results, and by the
possibility that surface temperature and the atmospheric concentrations of CO2 and
CH4 are determined jointly, which can generate simultaneous equation bias. Here,
we address these potential sources of error by estimating the relationship among
anthropogenic emissions of CO2 and CH4, the concentration of these gases, and
global surface temperature. To avoid spurious regression results, we use the dynamic
ordinary least squares (DOLS) estimator developed by Stock and Watson (1993).
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To avoid simultaneous equation bias, we use an instrumental variables procedure.
These techniques are used to estimate equations that are specified to answer two
questions; (1) does human activity affect global surface temperature and; (2) does
global surface temperature affect the atmospheric concentration of carbon dioxide
and/or methane. The results provide direct evidence that since 1870: (1) human
activity is largely responsible for the increase in global surface temperature and;
(2) higher surface temperature has increased the atmospheric concentration of CO2

and perhaps CH4.

2. Methodology

We build a simplified model of the climate system that includes statistically esti-
mated equations for three endogenous variables: global surface temperature and
the atmospheric concentrations of CO2 and CH4. Each of these equations spec-
ify explanatory variables that include another endogenous variable and variables
exogenous to the system (Box 1).

The specifications and techniques that are used to estimate the temperature and
concentration equations are determined by the presence of stochastic trends in the
data and the possibility that the endogenous variables are determined jointly. Using
four test statistics, Stern and Kaufmann (2000) find that the time series for global
surface temperature and the radiative forcing of greenhouse gases, anthropogenic
sulfur emissions, and solar irradiance contain a stochastic trend. The simplest ex-
ample of a stochastic trend is a random walk, which is a discrete time version of
continuous time Brownian motion, and is given by Equation (1):

Yt = λYt−1 + εt (1)

in which the autoregressive coefficient λ = 1, and ε is a normally distributed
random error term (i.e. the innovations) whose mean may be non-zero.

We test the assumption that the time series for emissions and other variables
contain a stochastic trend with the augmented Dickey-Fuller (ADF) test (Dickey
and Fuller, 1979). To carry out the ADF test, we estimate the following regression
for each variable of interest y:

�yt = α + βt + γ yt−1 +
s∑

i=1

δi�yt−i + εt (2)

where � is the first difference operator, t is a linear time trend (which is used to
represent a possible deterministic trend), ε is a random error term, and the coefficient
γ = λ − 1.

The null hypothesis of the ADF test is that the series contains a stochastic trend.
The ADF test evaluates this null, γ = 0 i.e. λ = 1, by comparing the t-statistic
for γ against a non-standard distribution (e.g. MacKinnon, 1994). Rejecting the
null hypothesis indicates that the autoregressive coefficient (λ) is less than one and
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the series is stationary. If this result is obtained for the level of the series, then the
series is termed integrated of order I(0). If the ADF statistic does not reject the null
hypothesis for the level of the series but rejects the hypothesis for its first difference,
the series is said to be integrated of order one I(1) (i.e. it needs to be differenced
once to become stationary). Similarly, a series is integrated of order two I(2) if only
the second difference of the series is stationary.

The results of the ADF test for the variables in levels in Box 1 fail to reject the
hypothesis that the absolute value of the autoregressive coefficient (λ) is equal to
one (Table I).

Thus, these variables cannot be analyzed as red noise. Instead, the results indicate
that the time series for temperature, anthropogenic emissions of CO2 and CH4, and

Box 1
Model Components

Exogenous Variables Endogenous Variables Identities

ECO2 Anthropogenic carbon emissions
(Houghton and Hackler, 1999;
Marland and Rotty, 1984)

GLOBL Global Surface
Temperature (Nicholls
et al., 1994; Parker
et al., 1998)

RF (prefix) Radiative
Forcing CO2, CH9,
CFC11, CFC12, N2O
(Shine et al., 1991;
Kattenberg et al., 1996)

ECH4 Anthropogenic methane
emissions (Kaufmann and Stern,
1996)

CO2 Atmospheric
concentrations (Keeling
and Whorf, 1994;
Etheridge et al., 1996;)

SOX (Wigley and Raper,
1992)

CFC Atmospheric concentration of
CFC’s (Prather et al., 1987; Elkins
et al., 1994)

CH4 Atmospheric
concentrations
(Etheridge et al., 1994;
Khalil and Rasmussen,
1994; Dlugokenchy
et al., 1994)

N2O Atmospheric concentration of
N2O (Prinn et al., 1990, 1995;
Machida et al., 1995)

SOX Anthropogenic sulfur emissions
(ASL, 1997)

SUN Solar irradiance (Lean et al., 1995)

SOI Southern Oscillation Index (Allen
et al., 1991)

NAO Northern Atlantic Oscillation
Index (Hurrel, 1995)

RFSS Radiative forcing of stratospheric
sulfates in the northern hemisphere
(appendix N) or southern hemisphere
(appendix S) and latitude (appendix)
(Sato et al., 1993)
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their atmospheric concentrations contain a stochastic trend. Traditionally, analyses
of the temperature record avoid the assumption of stochastic trends because these
trends are characterized by their long-term memory – the effects of innovations
do not fade over time. As such, temperature would be inherently unstable with no
tendency to return to a long-run mean.

This seeming contradiction is reconciled by identifying the sources of the
stochastic trends. The stochastic trends in temperature are caused by stochastic
trends in the radiative forcings that drive temperature, and not temperature itself.
That is, a direct shock to temperature does not accumulate over time. Rather, the
stochastic trends in temperature reflect the stochastic trends in the radiative forcing

Table I
Unit Root Tests

Entries are ADF statistics. Sample: 1860–1994

Series s = 2 s = 3 s = 4

I Univariate tests
RFAGG −1.82 −1.53 −1.30

�RFAGG −6.32 −5.82 −6.32

RFSSS30N30 −4.43 −4.09 −3.61

�RFSSS30N30 9.36 −8.49 −6.98

CO2 2.36a 0.70 0.54

�CO2 −1.39a −1.23 −1.19

�2CO2 −9.57 −7.49 −6.81

ECO2 0.13a −0.36 −0.20

�ECO2 −3.78 −3.55 −3.26

�ECO2b −4.83 −4.73 −4.51

CH4 −0.89 −0.88 −0.65

�CH4 −6.40 −5.94 −4.78

ECH4 1.06a 0.12 −0.14

�ECH4 −2.68 −2.24 −2.09

SOI −8.25 −6.95 −6.09

NAO −5.89 −5.30 −4.51

II Cointegration tests with estimated coefficients
(GLOBL, RFAGG) −5.54 −4.41 −3.98

(CO2, ECO2, GLOBL) −0.12 −0.17 −0.53

(�CO2, ECO2, GLOBL) −4.41 −4.14 −4.21
(CO2-.000469ECO2, GLOBL) 0.95 1.71 1.48

(�CO2-.000469ECO2, GLOBL) −3.38 −3.04 −2.98

(CH4, ECH4, GLOBL) −3.98 −3.64 −3.53

(CH4-.3517ECH4, GLOBL) −1.78 −1.26 −1.38

(Continued on next page)
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Table I
(Continued)

Series s = 2 s = 3 s = 4

III Cointegration tests with imposed coefficients
CO2-.000469ECO2 2.22 0.76 0.52

�CO2-.000469�ECO2 −1.47 −1.27 −1.19

�CO2-.000469ECO2 −2.81 −2.54 −2.45

�2CO2-.000469�ECO2 −9.49 −7.58 −6.75

CH4-0.3517ECH4 −0.90 −0.81 −0.58

�CH4-0.3517�ECH4 −6.73 −6.30 −5.02

Entries are the ADF test statistics computed using equation (2). Bolded values are significant at the
5% level (significance level is computed using MacKinnon’s (1994) approximation for parts I and III
and using Phillips and Ouliaris (1990) critical values for part II). The linear trend term in equation (2)
is excluded, if the series is in first difference (except the case denoted by b). Column heading “s = 2”,
etc., indicates the number of lags used in equation (2).
aA lag length s is rejected at the 5% level against the alternative s + 1.

of greenhouse gases and anthropogenic sulfur emissions. These trends are like “fin-
gerprints” that can be used to identify the effect of radiative forcing on temperature.

Stochastic trends in the radiative forcing data are associated with processes that
are driven by human activity and processes by which the atmosphere accumulates
gases. Anthropogenic emissions of radiatively active gases are determined by eco-
nomic activity. The economics literature is replete with studies that indicate GDP
and its components contain a stochastic trend therefore, these trends are embod-
ied in emissions. The presence of stochastic trends implies that emissions do not
increase as a deterministic function of time (e.g. anthropogenic sulfur emissions
decrease sharply after the 1970’s due to policies aimed at easing acid deposition
and carbon emissions by the Former Soviet Union decline sharply in the 1990’s
due to economic collapse). Therefore, specifying emissions with a deterministic
trend is incorrect. Similarly, the long residence time of many radiatively active
gases (e.g. CO2, CFC’s) implies that the atmosphere integrates emissions. This can
introduce a stochastic trend in the concentration time series, and the corresponding
values for radiative forcing. Even if temperature is an inherently stationary series,
an autoregressive model that does not control for radiative forcing variables may
have unit roots.

The presence of stochastic trends invalidates the blind application of standard
statistical techniques such as ordinary least squares (OLS) because they may gener-
ate spurious regression results. When evaluated against standard distributions, the
correlation coefficients and t-statistics for a spurious regression are likely to show
that there is a significant relationship between variables when none exists (Granger
and Newbold, 1974). The potential for spurious regression results led the IPCC to
caution “rigorous statistical tools do not exist to show whether relationships between
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statistically non-stationary data of this kind are truly statistically significant. . ..
(Folland et al., 1992, p. 163).”

At about the same time, time series econometricians developed techniques to
analyze relations among integrated time series and thereby avoid spurious regres-
sions. These techniques are based on the principle that if two or more integrated
time series have a functionally dependent relation, the stochastic trends present
in some of the series also will be present in the others. This shared trend implies
that there will be at least one linear combination of the series that is stationary
so that there is no stochastic trend in the residual (i.e. the residual is I(0)). This
phenomenon is known as cointegration (Engle and Granger, 1987; for a textbook
treatment, see Hamilton, 1994). Kaufmann and Stock (2003) illustrate the notion
of spurious regressions and cointegration for carbon cycle data.

Emphasis on cointegration allows us to alleviate some of the difficulties that
accompany the statistical analysis of nonstationary time series which contain con-
siderable uncertainty. The uncertainty associated with many of the series in Box 1
has been examined explicitly. Marland and Rotty (1984 find that fossil fuel emis-
sions have an error of about 10 percent after 1950. Before 1950, the error is about
20 percent (Keeling, 1973). Similarly, the temperature data for years after 1900 are
more reliable than data for years prior to 1900 (Jones, 1994). Uncertainty in the ice
core data for CO2 concentrations is relatively small 1–3 ppmv (Friedli et al., 1986;
Etheridge et al., 1996) but this error is complicated by uncertainty about the date
(Craig et al., 1997).

Nonetheless, uncertainty in the time series for CO2 and other variables probably
does not have a significant effect on the results reported below. If the uncertainty
in the time series is stationary (e.g. white noise), it will not affect tests for cointe-
gration and therefore conclusions about the presence of a statistically meaningful
relation among variables. Alternatively, if the data contain systematic errors that
are stochastically trending, then we will not find any cointegrating relations in the
data because there is no way to eliminate the unobserved stochastic trends asso-
ciated with the errors. Under these circumstances, stochastically trending errors
would obfuscate statistical estimates of physically meaningful relationships rather
than create relationships where none exist. Systematic errors will falsely indicate
cointegration only if the same systematic error is present in the time series for
temperature, concentrations, and emissions. Given the very different methods used
to measure and compile the time series for temperature, concentrations, and emis-
sions, it is highly unlikely that these time series contain the same trending errors.
Thus, it is unlikely that the relations described below are created by stationary or
non-stationary errors in the data.

We estimate the cointegrating relation among integrated variables using Dy-
namic Ordinary Least Squares, DOLS (Stock and Watson, 1993). DOLS generates
asymptotically efficient estimates of the regression coefficients for variables that
cointegrate. We use DOLS because it is computationally simple and it performs
well relative to other asymptotically efficient estimators (Stock and Watson, 1993).
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The coefficients estimated by DOLS represent the long run relationship among
variables. DOLS does not estimate the short-run dynamics as this is not necessary
for asymptotically efficient estimation of the cointegrating relation. The short-run
responses to deviations from the equilibrium relationship are estimated in a second
stage (as described below).

2.1. TEMPERATURE EQUATION

The temperature equation has three goals: (1) to estimate the relationship between
surface temperature and radiative forcing and the implied temperature sensitivity;
(2) to estimate the short-run dynamics by which temperature adjusts to changes in
radiative forcing; and (3) to separate the temperature effects of human activity from
the temperature effects of natural variability. To achieve these goals, the equation for
global surface temperature is estimated in two stages; (1) the cointegrating relation
between temperature and radiative forcing and (2) the short run dynamics by which
temperature adjusts to changes in radiative forcing and patterns of atmospheric and
oceanic circulation. To estimate the cointegrating relation between global surface
temperature and radiative forcing, we compile an aggregate for radiative forcing
that includes the radiative forcing of greenhouse gases (RFCO2, RFCH4, RFCFC11,
RFCFC12, and RFN2O), the direct and indirect radiative forcing of anthropogenic
sulfur emissions (RFSOX), and the radiative forcing of solar irradiance (RFSUN).
This aggregate (RFAGG) includes all components of radiative forcing that contain
a stochastic trend (Stern and Kaufmann, 2000). To determine whether there is a
statistically meaningful relation between this aggregate and global surface tem-
perature, we test whether these variables cointegrate. Cointegration is determined
using OLS to estimate the following equation:

GLOBLt = α + β1RFAGGt + μt (3)

and testing the residual (μt ) for a stochastic trend with the ADF statistic (Equation
(2)). If the variables cointegrate, the residual will be stationary. The ADF statistic
strongly rejects (P < 0.01) the null hypothesis that the residual contains a stochastic
trend, regardles of the lag length used in Equation (2) (Table I), which indicates that
the variables in (3) cointegrate. This result is consistent with cointegration between
temperature and radiative forcing found using different techniques (Kaufmann and
Stern, 2002). Cointegration indicates that there is a statistically meaningful relation
between global surface temperature and radiative forcing that can be estimated
efficiently using DOLS. Cointegration also means that this estimate will be efficient
even if global surface temperature and radiative forcing are determined jointly.

The DOLS estimate represents the long-run relationship between temperature
and radiative forcing. As such, temperature does not adjust immediately to changes
in radiative forcing. To simulate the rate at which temperature adjusts to changes in
radiative forcing and patterns of atmospheric and oceanic circulation, we estimate
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an error correction model (Engle and Granger, 1987):

�GLOBLt = α + β2μ̃t−1 +
s∑

i=1

δi�GLOBLt−i +
s∑

i=1

φi�RFAGGt−i

+
s∑

i=0

πi SOIt−i +
s∑

i=0

ψi NAOt−i +
s∑

i=0

ζi RFSSt−i + εt (4)

in which μ̃t is the residual from the cointegrating relation estimated by DOLS, SOI
is the southern oscillation index, NAO is an index for the North Atlantic Oscillation,
and RFSS is the radiative forcing of stratospheric sulfates.

The error correction term (θ2) gives the rate at which temperature adjusts to the
temperature associated with radiative forcing (β2), short run adjustments to tem-
perature (δ) radiative forcing (φ), oceanic and atmospheric circulation (π , ψ), and
volcanic activity (ζ ). Equation (4) is estimated using OLS because both the resid-
ual from the cointegrating relation and the dependent and independent variables
are stationary. The two step estimation procedure is justified because the DOLS
estimate for the cointegrating coefficient converges to its true value faster than OLS
(Stock, 1987; Engle and Granger, 1987).

2.2. CONCENTRATION EQUATIONS

Equations for the atmospheric concentration of CO2 and CH4 are derived from an
identity that is based on mass balance in the atmosphere;

xt = ρxt−1 + et + nt (5)

in which xt is the atmospheric concentration at time t and the previous period xt−1,
ρ is the retention rate, et denotes net emissions from human sources, and nt denotes
net flows from natural (non-human) sources. Ideally, the autoregressive component
and emissions from natural sources would be modeled using structural equations.
Unfortunately, the mechanisms that control atmospheric retention rates and the net
rate of natural emissions are uncertain. For example, scientists cannot balance the
flow of carbon to and from the atmosphere due to an unknown sink for carbon
(for a short review, see Schimel et al., 2001). Because of the unknown carbon sink
and other sources of uncertainty, we approximate natural flows to and from the
atmosphere using relatively simple specifications and add complexity (e.g. nonlin-
earities, structural changes) to evaluate the degree to which the results are robust.

Although Equation (5) specifies concentrations in absolute levels (e.g. ppm),
this mass balance assumes that the pre-industrial atmosphere was in equilibrium.
At equilibrium, net natural flows to the atmosphere (nt ) equal the losses associated
with the retention rate (1−ρ). As the system moves away from equilibrium, changes
in temperature and concentrations affect flows to and from the atmosphere. These
effects can be differentiated by specifying the retention rate separately from net
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natural flows. The retention rate would be affected most directly by the increase in
concentrations relative to the equilibrium. As atmopsheric concentration increases,
the net flow of carbon from the atmosphere to the ocean (and perhaps to the terrestrial
biota) will increase.

The net effect of temperature on natural flows of carbon to the atmosphere in
year t can be approximated (linearly) as follows,

nt = θ tempt + vt (6)

where vt represents natural emissions unrelated to temperature. Due to the lack of
a structural model, the regression coefficient θ represents the net effect of several
physical mechanisms, some of which may be responsible for the unknown carbon
sink. For example, the value of θ from Equation (6) as used for the CO2 equation
represents the net effect of temperature on net primary production, heterotrophic
respiration, and/or the solubility of carbon dioxide in sea water.

Representing the net effect of temperature on natural emissions suggests a rel-
atively simple model for atmospheric concentrations by substituting (6) into (5):

xt = ρxt−1 + et + θ tempt + vt (7)

This specification can be simplified for the CO2 equation by collecting the x terms
based on the assumption that ρ is one. If ρ is one, emissions, concentrations, and
temperature are I(1), and the error is I(0), then (7) is a cointegrating relation. Under
these conditions, the concentration equation for CO2 could be estimated using
DOLS and cointegration would alleviate concerns about simultaneous equation
bias.

Unfortunately, this approach is not possible. As indicated in Table I, emissions,
concentrations, and temperature do not cointegrate for either methane or carbon
dioxide. The lack of cointegration is not surprising. If unmodeled natural emissions
are highly persistent, the error term may be I(1). In the case of CO2, the time series
for carbon uptake by the unknown carbon sink that is assembled by Houghton
et al. (1998) is I(1) (Kaufmann and Stock, 2003), which implies that vt is I(1).
The importance of the unknown carbon sink is indicated by results in Table I,
which indicate that CO2, ECO2, and GLOBL may cointegrate, but this possibility
disappears when we impose mass balance by restricting the coefficient associated
with ECO2 to 0.000469, which is the physical constant that translates emissions
into concentrations.

To avoid statistical problems associated with the lack of cointegration, we take
the first difference of Equation (7)

�xt = ρ�xt−1 + �εt + θ�tempt + �vt (8)

Specifying the concentration equation in first differences eliminates all stochastic
trends and therefore allows us to avoid the effects of carbon uptake by the unknown
carbon sink(s) and measurement error on statistical estimates for the effect of tem-
perature on concentrations.
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Equation (8) can be modified to specify the possibility that the atmospheric
retention rate ρ depends on state variables. Specifically, saturation effects could
lead ρ to depend on the ambient concentration of the gas. For example, higher CO2

concentrations slow oceanic uptake via the Revelle effect, which would increase ρ.
Alternatively, high concentrations of atmospheric CO2 could increase net primary
production via the “CO2 fertilization effect” and thereby increase carbon uptake by
terrestrial vegetation. Finally, the retention rate also could depend on temperature.
For example, higher temperatures could lengthen the growing season, enhance net
primary production, and thereby increase CO2 uptake by terrestrial vegetation.

To account for possible nonlinearities, we let ρ depend on temperature and
concentrations. If the nonlinearities in ρ are small, state dependence could be
approximated by

�xt = �[ρ(xt−1, tempt−1)xt−1] + �et + θ�tempt + �vt . (9)

For the CO2 equation, we also model �vt (i.e. the net change in natural emissions)
as a function of observables zt , specifically SOI (Bacastow, 1976), which we can
represent as:

�vt = γ ′zt + ut , (10)

where ut is an I(0) error term.
Finally, we consider a first order linearization of ρ:

ρ(xt−1, temp′
t−1) ∼= ρ0 + ρ1xt−1 + ρ2tempt−1 (11)

Substituting (10) and (11) into (9) and collecting terms yields,

�xt = ρ0�xt−1 + ρ�(x2
t−1) + ρ2�(tempt−1xt−1) + �et +

θ�tempt + γ ′zt + ut . (12)

Physical mechanisms imply that surface temperature and the atmospheric con-
centration of CO2 and CH4 are determined jointly. For example, temperature ap-
pears on the left hand side of the temperature equation (Equation (3)) and appears
on the right hand side of the concentration equations (Equations (4) and (5)). This
joint determination would cause single equation estimates for the first difference
specifications of the concentration equations to suffer from simultaneous equation
bias. This bias could cause point estimates for the effect of temperature on the
atmospheric concentration of CO2 or CH4 to overstate their true value, regardless
of the sample size.

From a statistical perspective, the cause of simultaneous equation bias is
correlation between the endogenous variable (temperature) and the error term. To
avoid the resultant bias, we use an instrumental variable for temperature when tem-
perature appears on the right hand side of the concentration equations. The use of
instrumental variables in the concentration equations can be explained as follows.
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Movements in the atmospheric concentration of carbon dioxide and/or methane are
caused by exogenous variables (e.g. anthropogenic emissions), and endogenous
variables such as temperature. To obtain an unbiased estimate for the effect of
temperature, temperature can be viewed as having two components, an endogenous
component, which is associated with changes in CO2 (and CH4) concentrations,
and an exogenous component. The latter represents changes in temperature due
to exogenous variables, such as the radiative forcing of stratospheric sulfates (i.e.
volcanic activity) or lagged values of endogenous variables. These variables can
be used as instrumental variables because they induce exogenous movements in
temperature but do not directly affect the atmospheric concentration of CO2 (or
for the methane equation, CH4). For example, we use RFSS as an instrument for
temperature in the CO2 equation because the radiative forcing of volcanic sulfates
affects temperature but volcanic activity can be considered exogenous because any
effect on the atmospheric concentration of CO2 is small and occurs much later than
its effect on temperature (Krakauer and Randerson, 2003). As such, volcanically
induced temperature changes generate changes in CO2 concentrations that can be
isolated by using RFSS as an instrumental variable for temperature. Following this
approach, the use of instrumental variables “couples” the statistical estimation of the
temperature and concentration equations in a way that accounts for the simultaneity
among the equations for temperature and concentrations of carbon dioxide and
methane.

To use instrumental variables, the effect of temperature on carbon dioxide or
methane concentrations is estimated in two stages. In the first stage, tempera-
ture is regressed on the instrumental variables. This regression equation is used
to generate estimated values for temperature (T̂ ). These estimates are used in
place of the observed values for temperature in the second stage regression (i.e.
Equation (8)). Both the first and second stage equations can be estimated us-
ing ordinary least squares, which is termed the two stage least squares (2SLS)
estimator. Alternatively, coefficients can be estimated using the limited informa-
tion maximum likelihood (LIML) estimator (For a description of the the LIML
estimator, see Anderson, 2005; for a textbook treatment of instrumental vari-
ables regression, see Wooldridge, 2001). In theory, the LIML and 2SLS es-
timators are asymptotically equivalent and have the same asymptotic normal
distribution.

For the instrumental variables method to yield valid statistical inference, it is
required that the instrumental variables must be correlated with the endogenous
series. The strength of this correlation is evaluated with an F-test on the first stage
regression. If the first stage F statistic is less than 10, then the instruments are
“weak” and may generate misleading results because the usual t-tests on the second
stage regression coefficients are not accurately approximated by a standard normal
distribution (Staiger and Stock, 1997). To avoid misleading results, confidence
intervals also are estimated by inverting the Anderson-Rubin (Anderson and Rubin,
1949) (AR) test statistic.
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3. Results

3.1. TEMPERATURE EQUATION

Estimates and summary statistics for five possible specifications of the long-run
relationship between temperature and radiative forcing are reported in Table II. In
all columns except column 1, the equations are estimated using DOLS. The standard
errors, calculated by both the Newey-West and VARHAC (“Vector Autoregressive
Heteroskedasticity and Autocorrelation Consistent”) procedures, indicate that there
is a statistically meaningful relation between global surface temperature and the
aggregate radiative forcing variable that includes greenhouse gases, anthropogenic
sulfur emissions, and solar irradiance. As described below, this result is not sensitive
to the lags/leads used by DOLS or the degree to which the components of radiative
forcing are aggregated.

The number of lags and leads used by the DOLS estimator is chosen using the
Bayes Information Criterion, BIC (Schwarz, 1978). This criterion indicates that

Table II
Long-run relation between temperature and radiative forcing: Estimation Results for Equation 3

(1) (2) (3) (4) (5) (6) (7)

Estimation
method OLS DOLS (1) DOLS (2) DOLS (3) DOLS (1) DOLS (1) DOLS (1)

RFAGG .460 .489∗∗ .511∗∗ .539∗∗ .533∗∗ .428∗∗

[.041] [.044] [.044] [.050] [.057]

{.031} {.029} {.027} {.042} {.055}
RFCO2 .321

[.233]

RFCH4 1.92∗∗

[.74]

RFSOX .945∗∗

[.236]

RFSUN .563∗∗

[.243]

Sample 1860–1994 1863–1991 1863–1991 1863–1991 1863–1991 1900–1991 1959–1991

Notes : All regressions are run over the indicated sample period, with earlier and later observations
as initial/terminal conditions. The BIC for regressions (2), (3), and (4) is −2.011, −1.947, −1.898,
respectively, so (2) is chosen by BIC. The F-statistic (constructed as the Wald statistic using the
Newey-West variance covariance matrix) testing the hypothesis that all the coefficients on the I(1)
regressors in (5) are equal is 1.73 (p-value = .15). All regressions include an intercept (not reported).
DOLS(p) refers to the Stock-Watson (1993) dynamic OLS estimator with p lags and leads of X, where
X are the I(1) regressors.
Standard errors: [ ] = Newey-West (4 lags); {} = VARHAC (3 lags); ( ) = OLS.
Coefficients are statistically significantly different from zero at the: ∗∗1%, ∗5%, +10% level.
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one lag/lead is optimal (column 2). This choice does not affect the results. The
point estimate (and standard error) for the long-run relation between global surface
temperature and radiative forcing (β1) changes little if two or three leads/lags are
used (compare columns (2), (3), and (4)).

The validity of the confidence interval for β1 constructed using the estimates
and standard errors in Table II depends on radiative forcing having a unit root, that
is, λ = 1 in the notation of (1). If λ is large but not exactly one, then the confidence
intervals can have coverage rates less than the desired 95%, e.g. Kauppi (2004).
Moreover, the methods used here are all based on asymptotic theory, which might
not provide a good approximation for our sample size of 135. At the suggestion
of a referee, we therefore conducted a Monte Carlo study in which 135 pairs of
artificial data on (GLOBL, RFAGG) were generated according to the estimated
DOLS equation (Table II, Equation (2)), with auxiliary third order autoregressions
for the system errors, in which the largest autoregressive root of RFAGG was varied
through its 95% confidence interval of (0.942, 1.035). The cointegrating coefficient
and its standard error were then estimated using DOLS (exactly as in Table II)
for 10 000 replications of these artificial data. The results indicate a finite-sample
downward bias of the standard errors of approximately 10%. For λ = 0.942, the
asymptotic 95% confidence interval has an actual finite-sample coverage rate of
88%; for λ = 1.035, the coverage rate falls to 69%. These results suggest caution in
interpreting the standard errors on RFAGG in Table II, so in our subsequent analysis
we use the more conservative Newey-West standard errors for the cointegrating
coefficient β1.

Consistent with physical theory, the aggregate for radiative forcing is based
on the assumption that the temperature effect of a unit of radiative forcing (e.g.
W/m2) is equal across forcings. To test this assumption, we estimate a specification
that disaggregates the components of radiative forcing. Consistent with statistical
expectations, individual coefficients are estimated imprecisely (column 5). The
hypothesis of coefficient equality is not rejected at the 10% level (F(4, 108) =
1.73, using the Newey and West (1987) covariance matrix, which adjusts for serial
correlation in the error term (under the maintained assumption of cointegration, this
has an asymptotic distribution which is chi-squared with four degrees of freedom,
divided by 4). Together, these results suggest that the results reported in column
2 provide the most parsimonious representation of the long-run relation between
temperature and radiative forcing.

The results of the error correction model indicate that temperature adjusts to
deviations from the long run equilibrium relation between temperature and ra-
diative forcing. The estimate of the regression coefficient β2 associated with the
lagged residual from the cointegrating relation indicates that about 58 percent of
the disequilibrium in the cointegrating relation between temperature and radiative
forcing is eliminated per year. This rate is similar to the estimate by Kaufmann
and Stern (2002). On the other hand, there is no evidence that temperature adjusts
to lagged first differences of temperature and radiative forcing (Table III). These
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results are unaffected by the presence of changes in atmospheric and oceanic cir-
culation and volcanic activity (columns 3–4) or the number of lags and leads used
by the DOLS estimator (columns 5–6).

Regression results for Equation (4) also show the statistically significant ef-
fects of the radiative forcing of stratospheric sulfates, the southern oscillation, and
the North Atlantic oscillation. Consistent with previous results, decreases in the
SOI increase global surface temperature (ENSO events raise temperature) while
stratospheric sulfates have a negative effect on surface temperature. The coefficient
associated with stratospheric sulfates is considerably smaller than that associated
with the aggregate for radiative forcing. This may be caused by the difficulty as-
sociated with estimating temperature sensitivity from volcanic forcing. Using sim-
ple energy balance models, Lindzen and Giannitsis (1998) demonstrate that large
changes in the parameter for temperature sensitivity have a small impact on the
simulated temperature effect of volcanic activity. For example, the peak tempera-
ture effect increases only 0.15 ◦C as temperature sensitivity increases from 0.6 to
4.0 ◦C (Lindzen and Giannitsis, 1998). We explore this uncertainty by using the
temperature equation to simulate the temperature effect of the 1991 eruption by
Mt. Pinatubo (see Simulation Analysis).

The negative sign associated with the variables for NAO contradicts the positive
temperature effect described by Hurrell (1996). This difference may be caused by
the NAO index used (Ponta Delgada, Azores minus Iceland versus Lisbon minus
Iceland), the use of global surface temperature instead of temperature between 20◦N
and 90◦N, and/or the use of annual averages for temperature and the NAO index ver-
sus winter values. For example, the statistical significance of the NAO index drops
when we use an NAO index that measures the pressure difference between Lisbon
and Iceland (column 8, Table III). Consistent with this sensitivity, we do not attach
much significance to the coefficients associated with the North Atlantic Oscillation.

3.2. CARBON DIOXIDE EQUATION

The small F statistics for the first stage regressions indicate that the instruments for
temperature are weak. The effect of this weakness is evaluated by using 2SLS and
LIML techniques to estimate a linear version of Equation (11). A comparison of
columns (1) and (2) of Table IV indicates that the 2SLS and LIML point estimates
and standard errors are quite similar. Subsequent specifications are estimated using
LIML because LIML point estimates and confidence intervals are more reliable
than their 2SLS counterparts when the instruments are weak (Staiger and Stock,
1997).

Regression results from nearly all specifications indicate that the change in the
atmospheric concentration of CO2 is related to global surface temperature (Table
IV). As such, these results provide direct evidence that temperature increases since
1870 have on net, increased the atmospheric concentration of CO2. The positive
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effect may represent several physical mechanisms, such as a reduction in the ocean’s
ability to absorb carbon (Macintyre, 1978), changes in upwelling that slow the flow
of carbon from the ocean to the atmosphere (Dettinger and Ghil, 1998), and/or an
increase in heterotrophic respiration relative to net primary production (Vukicevic
et al., 2001). The regression coefficients indicate that a 1 ◦C rise in temperature
increases the atmospheric concentration of CO2 by about 1.5 ppmv. Although this
effect does not reflect any single physical mechanism, the magnitude of this net ef-
fect is similar with a theoretical analysis of the ocean’s ability to absorb CO2, which
indicates that a 1 ◦C rise in ocean surface temperature (100m surface layer) would in-
crease the atmospheric concentration of CO2 by 1.5 ppm (Macintyre, 1978). The re-
gression coefficient also is the same order of magnitude of an empirical estimate that
suggests CO2 concentrations rise by about 3 ppmv per 1 ◦C (Keeling et al., 1989).

Despite the consistency of the temperature effect, the regression coefficients
associated with concentrations and emissions reflect the inability to balance carbon
flows in and out of the atmosphere due to the unknown carbon sink. Mass balance
in Equation (5) implies that there is a unit coefficient on human emissions and no
intercept. A unit coefficient on et in Equation (5) corresponds to the restriction that
the coefficient associated with �ECO2 is 0.000469, which is the conversion factor
that translates a mass of CO2 (thousand petagrams) into its atmospheric concen-
tration (ppmv). Although the estimated coefficient is twice this, this estimate is
imprecise and the hypothesis that the coefficient on �ECO2 equals its theoretical
value is not rejected at the 5% level in specifications (1)–(3). To compensate for this
large value, the statistical technique assigns a low value to ρ. This combination of
values “solves” the difficulties associated with the unknown carbon sink by putting
extra of carbon into the atmosphere and then taking it out quickly. In column 3, we
ensure mass balance by imposing a value of 0.000469 on the coefficient associated
with �ECO2. The value of ρ rises slightly and the intercept becomes statistically
significant (p < 0.05). Taken literally, this intercept increases the atmospheric con-
centration of CO2 by 0.075 ppmv annually. This secular increase is nonsensical and
so we suppress the constant and impose mass balance on emissions in specification
(5). Together, these restrictions are inconsistent with the inability to balance the
global carbon cycle due to the unknown carbon sink, therefore the mass balance
restriction on the coefficient associated with �ECO2 is rejected (p < 0.05).

Statistical estimates for ρ are substantially lower (i.e. shorter residence time)
than implied by the physical science evidence. This result reflects inadequacies in
existing statistical techniques. Estimators of autoregressive coefficients are biased
towards zero (Hamilton, 1994), and this bias is especially pronounced when the
true autoregressive coefficient is large (i.e. when ρ is close to 1). This bias increases
when a constant is included, and this makes the estimated value for ρ smaller in
specification (3) than in (4). This bias can be eliminated in simple models but to the
best of our knowledge, methods that can adjust for this bias have not been developed
for the type of models estimated here, in which there are additional regressors and
the estimation procedure uses instrumental variables methods.
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To evaluate the effect of this bias on the statistical estimates for the temperature
effect, we impose different values on ρ. As an extreme case, in which there is no net
flow of carbon from the atmosphere, we impose ρ = 1. This extreme assumption
does not materially alter the estimated coefficients on the other variables. Nor can we
reject a specification that imposes a value of 0.965 for ρ, which is the value obtained
by OLS estimation of Equation (7) in levels when we impose the mass balance
conversion coefficient 0.000469 on ECO2. Such a value for ρ is consistent with the
long persistence of a one-time pulse of carbon indicated by models that simulate
the physical mechanisms that determine the rate of carbon flows to and from the
atmosphere (Albritton and Filho, 2001). Based on these results, we conclude that the
relatively low point estimate of ρ in specifications (1)–(3) is caused by non-normal
and biased estimator distributions. As a result, we cannot use the estimates of ρ to
make statements about the size of the CO2 fertilization effect, the Revelle effect, or
any other physical mechanism by which the atmospheric concentration of CO2 may
affect the rate of which carbon flows to or from the atmosphere. Nonetheless, these
difficulties do not affect the estimates of the other coefficients, most importantly
the effect of temperature on the atmospheric concentration of CO2.

Despite uncertainty about the value of ρ, there is little statistical evidence that ρ is
state dependent. The nonlinear terms in column 6 are jointly insignificant at the 10%
level, although the temperature-concentration term is significant at the 10% (but
not 5% level). Regression results from a specification that represents the possibility
that the removal rate changes over time show no marked trend (specification 7),
and the null hypothesis that ρ is constant cannot be rejected (p > 0.25).

Specification (8) considers a reduced instrument list, which includes the radia-
tive forcing of stratospheric sulfates only. We drop lags of �GLOBL and SOI
because they may be correlated with a serially correlated error term. Without
lags of �GLOBL and SOI, the first stage F statistic drops to 4.19, and the es-
timates are considerably less precise. Nonetheless, the point estimates are similar
to those in column (3), which suggests that the conclusion that temperature affects
the flow of carbon to and from the atmosphere is not sensitive to the instrument
set.

3.3. METHANE EQUATION

The mass balance equation seems inconsistent with the time series properties of
methane concentrations, which appear to be I(1), and anthropogenic emissions,
which appear to be I(2). The seeming contradiction can be reconciled by the
magnitude of anthropogenic emissions and the physical determinants of atmo-
spheric methane concentrations. In any year, anthropogenic methane emissions are
a relatively small component of atmospheric concentrations, which implies that
the I(2) component of atmospheric concentrations is small. Furthermore, the at-
mospheric lifetime of methane is relatively short (the autoregressive coefficient is
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significantly less than 1.0) which would tend to “erase” the I(2) trend in methane
emissions. Together, these two factors make it difficult to detect the I(2) trend in the
concentration data, therefore CH4 appears to be I(1). Because of this ambiguity, we
examine the time series properties of CH4 − 0.3517 × ECH4 (0.3517 is the conver-
sion factor that translates teragrams of CH4 to ppbv). As indicated in Table I, this
constructed series is I(1). This is consistent with a retention rate (ρ) substantially
less than one, GLOBL being I(1), and an error term that is either I(0) or I(1). A
value of ρ substantially less than one is consistent with the short residence time of
methane (about a decade) relative to carbon dioxide.

The first stage F for the CH4 equation is somewhat larger than for the CO2 equa-
tion, and the LIML and 2SLS results are quite similar (Table V). None of the specifi-
cations are rejected by the overidentification J-test, and all of the AR confidence in-
tervals for the coefficient on �GLOBL are nonempty. The AR confidence intervals
generally are similar to, but somewhat wider than, the LIML confidence intervals.

For all specifications, the point estimates for the effect of global surface temper-
ature on methane concentrations are similar (Table V). Despite this similarity, these
estimates are imprecise. The hypothesis that the coefficient on �GLOBL is zero
cannot be rejected at the 10% level using the LIML estimates, and the AR confi-
dence intervals for this coefficient all include zero. Together, these results indicate
that we cannot estimate the effect of global surface temperature on the atmospheric
concentration of methane in a statistically precise manner.

Estimation results for specifications (1)–(3) are consistent with mass balance.
Although the point estimate of the coefficient on �ECH4 is almost three times its
theoretical value 0.3517, this estimate is very imprecise and the hypothesis that it
equals its theoretical value is not rejected at the 10% level. Similarly, the intercepts
in specifications (1) and (2) are not statistically different from zero at the 10%
level. Finally, the estimates for ρ vary between 0.35 and 0.44. These values are
significantly less than 1.0, which is consistent with physical theory. On the other
hand, the values imply a residence time that is shorter than the 8.4 year atmospheric
residence time and the 12 year perturbation time reported in the literature (Ehhalt
and Prather, 2001).

The physical mechanisms that remove methane from the atmosphere imply that
ρ is not constant, but results that indicate ρ is not constant probably are statistically
spurious artifacts because they contradict physical theory. The only statistically
significant nonlinear effect in specification (4) is the concentration term. The neg-
ative sign on this term corresponds to an inverse saturation effect (i.e. a smaller
value of ρ at higher concentrations). Moreover, estimates for the interaction terms
in specification (5) suggest that the removal rate increases from 37% (1–0.629) in
the first third of the sample to 78% (1–0.217) in the final third. There is no phys-
ical reason to believe that the direction or magnitude of this change is plausible.
Instead, this pattern of time varying persistence may be caused by changes in the
data. Concentration data change smoothly early in the sample period when values
are derived from ice cores, as opposed to sharp changes during the observational
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record. Smoothness will increase the estimates for persistence, which will increase
ρ early in the sample.

As a final diagnostic, the residuals from the three equations are modeled using a
second order vector autoregression. There is a small but nonzero serial correlation
in each equation, which is consistent with unmodeled nonlinearities and omitted
serially correlated influences on net natural emissions. However, there is no cross
correlation (p > 0.15), which suggests that these omitted variables do not mask
some remaining simultaneity that is not modeled explicitly.

4. Simulation Analysis

We assemble the four endogenous equations with the identities to generate a simple
simultaneous equation model as follows:

Endogenous equations

GLOBLt = 0.489RFAGGt (13)

�GLOBLt = −0.582(GLOBLt−1 − 0.489 RFAGGt−1) + 0.034 RFSSt

+ 0.047�GLOBLt−1 − 0.166 �RFAGGt−1 − 0.057 SOIt

−0.020SOIt−1 − 0.005 NAOt − 0.003 NAOt−1 − 0.008 NAOt−2

(14)

�CO2t = 0.000469�ECO2t + 1.46�GLOBLt−1 + 0.110 SOIt−1

+0.905�CO2t−1 (15)

�CH4t = 0.3517ECH4t + 24.4�GLOBLt−1 + 0.44�CH4t−1 (16)

Identities

GLOBLt = GLOBLt−1 + �GLOBLt (17)

CO2t = CO2t−1 + �CO2t (18)

CH4t = CH4t−1 + �CH4t (19)

RFCO2t = 6.3 ln(CO2t/CO2 1860) (20)

RFCH4 = 0.03873
(√

CH4t −
√

CH4 1860

)
(21)

RFAGGt = RFCO2t + RFCH4t + RFCFC11t + RFCFC12t + RFN2Ot

+SOXt + RFSUNt (22)

Exogenous variables

RFCFC11, RFCFC12, RFN2O, RFSUN, SOX, ECO2, ECH4

in which parameters are taken from the following estimation results [Equation (13)
Table II specification (2); Equation (14), Table III specification (3); Equation (15)
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Table IV specification (4); Equation (16) Table V specification (3). In this section,
we use this model to: (1) separate the effects of natural variability and human
activity on global surface temperature between 1870 and 1990; (2) estimate the
effect of exogenous variables on temperature and concentrations of atmospheric
CO2, and (3) evaluate temperature sensitivity and climate dynamics.

4.1. THE TEMPERATURE EFFECT OF NATURAL VARIABILITY

VERSUS HUMAN ACTIVITY

To separate the temperature effect of human activity from natural variability, we
simulate the simple climate model given by Equations (13)–(22) with either human
activity or natural variability held constant. To assess the effect of natural variability,
we hold human activity constant by setting anthropogenic emissions of CO2, CH4,
and sulfur to zero, set the concentration of CO2, CH4, CFC11, CFC12, and N2O
to their 1870 level, and simulate the model with the historical pattern of changes
in SUN, RFSS, SOI, and NAO. Changes in these variables cause a great deal of
variability, but do not cause global surface temperature to increase significantly
(Figure 1).

To asses the effect of human activity, we eliminate the effects of natural vari-
ability. We do so by holding SUN, RFSS, SOI, and NAO at their 1870 level. To
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Figure 1. Historical temperature (solid line), temperature simulation based on changes in natural
forces (RFSUN, RFSS, SOI, and NAO–dashed-dotted line), temperature simulation based on changes
in radiative forcing associated with human activity (RFCO2, RFCH4, RFCFC11, RFCFC12, RFN20,
RFSOX – dotted line), temperature simulation based on both natural factors and radiatively active
gases associated with human activity (dashed line).
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avoid the disruptive effect of the unknown carbon sink and the relatively short res-
idence time for methane on the model’s ability to simulate the temperature effect
associated with anthropogenic emissions of CO2 and CH4, we set their concentra-
tions exogenously consistent with their historical values (rather than use Equations
(15) and (16)). The concentrations of CFC11, CFC12, and N2O also follow their
historical values.

Simulation results indicate that changes in the atmospheric concentration of
greenhouse gases and anthropogenic sulfur emissions account for much of the
increase in global temperature between 1870 and 1990 (Figure 1). This increase
is not steady. Temperature increases between 1910 and 1944 and from 1970 to
1990 are associated with increases in total radiative forcing. These increases are
associated with an increase in the radiative forcing of greenhouse gases relative
to anthropogenic sulfur emissions. The radiative forcing of anthropogenic sulfur
emissions increases at about the same rate as greenhouse gases between 1944 and
1976. As a result, there is relatively little net increase/decrease in total radiative
forcing and therefore, global surface temperature. The timing of these temperature
effects is consistent with results obtained from model simulations (Andronova
and Schlesinger, 2000; Tett et al., 1999). Finally, an experiment that simulates
the historical changes in both natural variables and gases associated with human
activity is able to account for much of variation in global temperature over the last
130 years (Figure 1).

4.2. THE EFFECT OF EXOGENOUS VARIABLES

The effect of exogenous variables on temperature and concentrations can be as-
sessed by using the model to simulate impulse response functions. To run these
experiments, we set exogenous variables to their pre-industrial value (e.g. zero emis-
sions of CO2, CH4, and sulfur) or zero (e.g. SOI, NAO, RFSS), use a version of the
CO2 equation that suppresses the constant (specification 3), and allow the system to
come to equilibrium. We simulate a series of experiments in which this equilibrium
is perturbed by a one-time increase in CO2 or CH4 emissions (9.6 Pg. and 580 Tg.
respectively) that generates an immediate 0.1 W m−2 increase in radiative forcing
(the CO2 and CH4 experiment respectively), a one-time 0.1 W m−2 increase in the
radiative forcing of solar irradiance (sun experiment), a two year decrease in the SOI
that mimics the 1982–1983 El Niño (ENSO experiment), and a three year change
in RFSS that mimics the eruption of Mount Pinatubo (Pinatubo experiment).

Consistent with the equal impact of across forcings, the one-time increase
in CO2 emissions, CH4 emissions, or solar irradiance has the same effect on
temperature in the short run (Figure 2). The long-run effect of these changes varies
by forcing. Consistent with our argument that temperature itself is not I(1), the
increase in solar activity has little effect beyond the first year. The temperature
effect of the one-time increase in CH4 emissions is slightly longer due to the
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Figure 2. The temperature effects of the CO2 experiment (long dashed line), the CH4 experiment
(dotted line), the sun experiment (short dashed line), the ENSO experiment (solid line), and the
Pinatubo experiment (dashed doted line).

persistence of CH4 in the atmosphere. As described earlier, the persistence of
this effect probably is too short because the CH4 equation underestimates the
atmospheric residence time of methane. Because the atmospheric lifetime of
CO2 is significantly longer than the rate at which temperature adjusts to the
increase in radiative forcing, temperature continues to rise beyond the immediate
effect. Nonetheless, this effect also fades over time. Consistent with the statistical
difficulties associated with estimating ρ for the CO2 equation, the length of this
period cannot be determined with much certainty.

The impulse response functions indicate that the El Niño-Southern Oscillation
has a significant effect on global surface temperature and atmospheric CO2. Values
for the SOI which simulate the 1982–1983 El Niño event increase global surface
temperature by about 0.1 ◦C (Figure 2). This effect is slightly lower than previous
estimates of about 0.2 ◦C (Jones, 1989; Angell, 1988). This temperature increase
is not large enough to offset completely the effect of the SOI variable in the CO2

equation therefore, the ENSO experiment indicates that on net, the 1982–1983
El Niño reduced atmospheric CO2 by about 0.34 ppmv. This negative effect is
consistent with analyses that suggest that ENSO events reduce the flow of carbon
to the atmosphere by slowing ocean upwelling (Dettinger and Ghil, 1998; Winguth
et al., 1998) or that enhanced incoming solar radiation during the early stages of
an ENSO event increase carbon uptake by terrestrial vegetation (Graham et al.,
2003; Yang and Wang, 2000). This reduction also is consistent with an inverse
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relation between ENSO and the atmospheric growth rate of CO2 (Rayner et al.,
1999; Francey et al., 1995). Conversely, the net negative effect seems to contradict
results that indicate atmospheric concentrations of CO2 rise during ENSO events
because reduced uptake by the terrestrial biota exceeds the increased uptake by the
oceans (Joos et al., 1995; Keeling et al., 1995).

Consistent with the uncertainty about the temperature effect of volcanic activity
described above, estimates for the temperature effect of the Mount Pinatubo eruption
vary. The Pinatubo experiment indicates that this eruption reduced annual global
surface temperature by a maximum of −0.12 ◦C (Figure 2). This effect is similar to
the two year reduction (−0.19 and −0.18 ◦C) found by Yang and Schlesinger (2001)
after they removed the temperature effects of the concurrent El Niño–Southern
Oscillation. Both of these effects are slightly smaller than the temperature effects
generated by Hansen et al. (1992). Together, these results imply that our statistical
estimate cannot be used to narrow the existing range for the temperature effect of
stratospheric sulfates. Nonetheless, the statistical estimate for the temperature effect
of stratospheric sulfates is not unreasonable and does not undermine the estimate
for the temperature effect of greenhouse gases, anthropogenic sulfur emissions, and
solar irradiance.

4.3. TEMPERATURE SENSITIVITY AND TEMPERATURE DYNAMICS

The estimates for β1 in Equation (3) and β2in Equation (4) can be used to evaluate the
temperature sensitivity and dynamics of the climate system. The DOLS estimate of
β1 reported in column 2 of Table II (0.489) indicates that doubling the pre-industrial
concentration of CO2 would increase global surface temperature by about 2.1 ◦C
(0.489 × 6.3 × ln(2)), with a 95% confidence interval of 1.8 to 2.5 ◦C based on the
more conservative Newey-West standard errors in Table II.

This estimate begs the question regarding the time scale of the change. These
adjustments are summarized by three definitions of temperature sensitivity: the
transient climate response, the equilibrium climate sensitivity, and the effective
climate sensitivity (Cubasch and Meehl, 2001). Analysis of simulations run for
the coupled models intercomparison project indicate that the temperature effect
of doubled CO2 estimated here is consistent with the transient climate response
(Kaufmann et al., 2006).

Consistent with this interpretation, the temperature sensitivity implied by β1

2.1 ◦C falls in the middle of the 1.2 to 3.1 ◦C range of values for the transient
climate response simulated by climate models (Cubasch and Meehl, 2001). This
range can be narrowed by our estimate for β1. Using the Newey West estimator,
which generates larger standard errors than the VARHAC estimator, the 95 percent
confidence interval for our statistical estimate of β1 is equivalent to a temperature
sensitivity of 1.8–2.5 ◦C. This range does not vary greatly by period. The DOLS
estimate forβ1 with data for 1900–1991 (the more reliable portion of the temperature
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data), yields a 95 percent confidence interval of 1.9–2.8 ◦C while data for 1959–
1991 (the start date for the Mauna Loa record for atmospheric CO2 measurements)
yields a range of 1.4–2.4 ◦C.

The rapid rate of adjustment represent by β2 also is consistent with the rates of
adjustment associated with the transient climate response. Simulating the CMIP2
experiments analyzed by Kaufmann et al. (2006) (an annual one percent increase in
atmospheric CO2 until concentration doubles) with Equations (13)–(22) indicates
that about 95 percent of the temperature increase implied by β1 occurs at the time
that the atmospheric concentration of CO2 doubles. This rapid rate of adjustment
and sharp slowdown thereafter is consistent with the abrupt slow-down in the tem-
perature increase simulated by the CMIP2 experiments that occurs immediately
after the initial doubling of the atmospheric concentration of CO2.

5. Conclusion

Recent advances in time series econometrics can be used to estimate statistically
meaningful equations for the relation among human activities that emit CO2 and
CH4, the atmospheric concentration of these gases, and global surface temperature.
The results provide direct evidence that there is a statistically meaningful relation-
ship between global surface temperature and an aggregate of radiative forcing that
includes greenhouse gases, anthropogenic sulfur emissions, and solar activity. A
simple model based on these results indicates that greenhouse gases and anthro-
pogenic sulfur emissions are largely responsible for the observed increase in global
surface temperature between 1870 and 1990. This result is direct evidence for the
effect of human activity and global climate.

The effect of human activity on surface temperature is reinforced by the simulta-
neous relationship between surface temperature and the atmospheric concentration
of CO2. Our results indicate that the global carbon cycle contains a positive feed-
back loop in which temperature increases associated with human activities that
emit CO2 (and other greenhouse gases) change flows to and from the atmosphere
in a way that on net increases the atmospheric concentrations of CO2, increases
its radiative forcing, and increases temperature further. Together, our estimates for
the simultaneous linkages among climate, human activity, and the biogeochemical
cycling of carbon improve empirical estimates that focus on individual links and
omit important variables.
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